CONTENTS

1. Food and Water
 - Disaster Recovery Fact Sheet - Safe Water
 - Disaster Recovery Fact Sheet - Food Safety
 - Recuperación de Desastres - Seguridad Alimentaria
 - Recuperación de Desastres - Agua Potable para Emergencias

2. Mental Health
 - Disaster Recovery Fact Sheet - Mental Health for Adults
 - Recuperación de Desastres Salud - Mental para Adultos
 - Disaster Recovery Fact Sheet - Mental Health for Kids
 - Recuperación de Desastres - Salud Mental para Niños
 - Parenting after a Natural Disaster
 - Trauma and Adolescents

3. Home Repairs
 - Disaster Recovery Fact Sheet - Mold
 - Recuperación de Desastres Limpiando Moho después de una Inundación
 - Hurricanes and Mosquitoes

4. Landscape Repairs
 - Cleaning up after a Hurricane—Safety Comes First!
 - Limpieza después de un Huracán—¡La seguridad Es lo Primero!
 - Get the Right Tree Care Professional
 - Consiga el Profesional Correcto para el Cuidado de los Árboles
 - Assessing Hurricane-Damaged Trees and Deciding What to Do
 - Evaluación de los Árboles Dañados durante un Huracán y Toma de Decisiones
 - Disaster Recovery Fact Sheet - Damaged Trees
 - Recuperación de Desastres Árboles Dañados por el Huracán
 - Restoring Trees after a Hurricane
 - Restauración de Árboles después de un Huracán
 - Hurricane-Damaged Palms in the Landscape—Care after the Storm
 - Preparation for and Recovery from Hurricanes and Windstorms for Tropical Fruit Trees in the South Florida Home Landscape
 - Planting and Establishing Trees
 - Selecting Quality Trees from the Nursery
 - Urban Design for a Wind Resistant Urban Forest
 - Choosing Suitable Trees for Urban and Suburban Sites—Site Evaluation and Species Selection
 - Developing a Preventive Pruning Program—Young Trees
 - Developing a Preventive Pruning Program in Your Community—Mature Trees
 - Developing an Urban Forest Management Plan for Hurricane-prone Communities
 - Wind and Trees—Lessons Learned from Hurricanes
 - Wind and Trees—Surveys of Tree Damage in the Florida Panhandle after Hurricanes Erin and Opal
 - Selecting Southeastern Coastal Plain Tree Species for Wind Resistance
 - How to Minimize Wind Damage in the South Florida Landscape
 - Selecting Tropical and Subtropical Tree Species for Wind Resistance

5. Applying for Assistance
 - Six Steps in Making an Insurance Claim
 - Individual Assistance Programs from FEMA
 - USDA Farm Service Agency Disaster Assistance
 - What You Need to Apply for Disaster Rehabilitation
 - Replacing Lost or Damaged Documents
 - Avoiding Fraud and Deception
 - Tax Relief in Disaster Situations

6. Farms
 - Preparing for and Recovering from Hurricane and Tropical Storm Damage to Tropical Fruit Groves in Florida
 - Assessment and Management of Hurricane Damaged Timberland
 - Storm-Damaged Agrichemical Facilities
SAFE WATER FOR EMERGENCIES

Purifying Water

If, before or after the emergency, your water supply is contaminated, or if you are under a Boil Water Advisory, these are the most effective methods to purify water:

Boiling

- Bring water to a rolling boil for at least 1 minute.
- Allow it to cool before putting it into a clean, sanitized, tightly capped container.
- Water that is cloudy should be boiled between 3-5 minutes.

Iodine (tablets)

- Add 4 tablets iodine per each 1/2 gallon of water.
- Stir thoroughly.
- Allow the iodine and water mixture to stand for 30 minutes.

Iodine (tincture)

- Add 1 drop iodine (label concentration 2.0%) per 1/2 gallon of water.
- Stir thoroughly.
- Allow the iodine and water mixture to stand for 30 minutes.

Remember: Have available 1 gallon of drinking water, per person, per day—for at least 3 days.
UF/IFAS Extension offers the following guidelines to determine what foods to keep and which to throw out after a disaster has caused loss of power:

- If the refrigerator has been kept closed, the food is good for approximately 4 hours.
- If the freezer is full and kept closed, the food is good for 48 hours.
- If the freezer is half-full and kept closed, the food is good for 24 hours.
- Frozen foods that have thawed need to be thrown away, even if they have re-frozen.
- Foods that were handled or partially eaten likely contain more bacteria and should be discarded.
- Don’t give discarded foods to pets because they could become ill.

For more information, visit http://edis.ifas.ufl.edu/fs131
La extensión de UF/IFAS surgiere las siguientes directrices para determinar cuáles alimentos se deben guardar y cuáles se deben botar después que un desastre natural causa que se vaya la luz:

- Si la nevera se ha mantenido cerrada, los alimentos durarán por aproximadamente 4 horas.

- Si el congelador está lleno y se mantiene cerrado, los alimentos durarán por 48 horas.

- Si el congelador está medio lleno y se mantiene cerrado, los alimentos durarán por 24 horas.

- Los alimentos que han sido descongelados se tienen que botar, no se deben volver a congelar.

- La comida que ha estado fuera de su empaque o parcialmente comida, se debe desechar porque probablemente está contaminada.

- No les dé la comida desechada a mascotas porque ellos también se pueden enfermar.
AGUA POTABLE PARA EMERGENCIAS

Purificando agua

Si, antes o después de una emergencia, su suministro de agua está contaminado o si están en una alerta de contaminación de aguas, estos son los métodos más efectivos para purificar el agua:

Ebullición

- Herve el agua por un minuto.
- Permite que el agua se enfrié antes de ponerlo en un contenedor limpio, desinfectado y bien cerrado.
- Agua turbia se debe hervir entre 3-5 minutos.

Pastillas de yodo

- Añade 4 pastillas de yodo a cada medio galón de agua.
- Mézclalo bien.
- Permita que la mezcla de yodo y agua reposen por 30 minutos.

Tintura de yodo

- Añade una gota de yodo (con una concentración de 2.0%) a cada medio galón de agua.
- Mézclalo bien.
- Permita que la mezcla de yodo y agua reposen por 30 minutos.

Recuerdo: Asegúrense de tener un galón de agua potable por cada persona, cada día—por lo menos para 3 días.

Para más información, visite http://edis.ifas.ufl.edu/ss439
UF/IFAS experts offer tips on taking care of your mental health after a disaster:

- Be gentle on yourself and others during this stressful time.
- Focus on self-care, such as eating regularly (and healthy foods, if possible), getting rest and exercise, and trying to take some time out for yourself daily.
- Try to maintain a normal routine, limiting demanding responsibilities on yourself and your family.
- Use existing support systems of family, friends and religious institutions for help and emotional support.
- Seek out a professional therapist or counselor.
- Children are looking at how you are responding as a cue to how they should feel about things. Giving them the message that you can get through this is comforting to them.
SALUD MENTAL PARA ADULTOS

Los expertos de UF/IFAS ofrecen consejos en cómo cuidar su salud mental después de un desastre natural:

- Sea amable consigo mismo y hacia otros durante este tiempo de mucho estrés.
- Enfóquese en el cuidado personal. Come con frecuencia alimentos saludables (si posible), descanse y haga ejercicios y trate de separar un tiempo para usted mismo diariamente.
- Trate de mantener una rutina normal, limitando las responsabilidades exigentes suyas y la de su familia.
- Júntese a sistemas de apoyo familiares, amistades e instituciones religiosos para ayuda y apoyo emocional.
- Busca a un terapeuta profesional o consejero.
- Los niños siempre están observando cómo se reacciona a tiempos difíciles. Si usted le muestra que se puede superar la situación difícil, esto será de consolación para ellos.

Para más información, visite http://edis.ifas.ufl.edu/fm001

Línea de Ayuda para Desastre de la Administración de Abuso de Sustancias y Salud Mental, llama al 1-800-985-5990 o mande este mensaje de texto TalkWithUs al 66746.
MENTAL HEALTH FOR KIDS

• Spend more time with your children. Let them stick by your side.

• Do something fun and physical to relieve tension.

• Reassure children that you care about them and encourage older children to talk about their feelings and thoughts.

• Answer children’s questions about the event.

• Keep regular schedules for meals, playtime and bed time as much as possible. This will help to restore order in the family’s life.

For more information, visit http://edis.ifas.ufl.edu/fm001

Substance Abuse and Mental Health Services Administration Disaster Distress Helpline, call 1-800-985-5990 or text TalkWithUs to 66746.
SALUD MENTAL PARA NIÑOS

- Haga el esfuerzo de pasar más tiempo con sus hijos.
- Hagan algo divertido y manténgase activos para aliviar tensión.
- Asegúrenles que usted los ama y anime a sus hijos mayores que expresen sus pensamientos y sentimientos.
- Contesten cualquier pregunta que sus hijos les hagan sobre el desastre natural.
- Mantengan un horario regular para comer, jugar y dormir cuando sea posible. Esto ayudara restaurar la rutina familiar.

Para más información, visite http://edis.ifas.ufl.edu/fm001

Línea de Ayuda para Desastre de la Administración de Abuso de Sustancias y Salud Mental, llama al 1-800-985-5990 o mande este mensaje de texto TalkWithUs al 66746.
Nobody ever said family life was a breeze . . . yet few are prepared for the gale force impact that hurricanes can pack on even the healthiest of families.

This is a stressful time, and it’s common for all family members to show signs of stress. Right after a natural disaster, parents and children may be tense and nervous, restless, and have trouble calming down. They may also experience stomachaches, headaches, and dizziness. Many people who are under strain from natural disasters feel fatigued and low in energy.

An event like a hurricane is frightening to children and adults. Children may show their fear by refusing to go back to school, misbehaving, and/or clinging to a parent. They may have trouble sleeping and want to sleep with a parent.

Family recovery will go more smoothly when the adults in the household can control their own feelings of stress, anxiety, and fear and do everything possible to help their children feel safe. A few suggestions may help parents at this difficult time:

Spend more time with your children. Let them stick by your side. Also, doing something fun and physical relieves tension. Reassure children that you care about them and encourage older children to talk about their feelings and thoughts. Answer their questions.

Keep regular schedules for meals, playtime, and bed time as much as possible. This will help to restore order in the family’s life.
More information about how to cope with a natural disaster can be found on our website at http://www.familyalbumradio.org

To listen to the radio broadcast:

http://radiosource.net/radio_stories/paand.wav

http://radiosource.net/radio_stories/paand.mp3

References

The mention of the word trauma can bring about thoughts of war, rape, kidnapping, abuse, or natural disaster. However, trauma can also come from common events, such as sudden injury or an automobile accident (Costello, Erkanli, Fairbank, & Angold, 2002). In the United States, it is estimated that 5 million children are exposed to traumatic events yearly (Ruzek et al., 2007). Seventy to ninety percent of people will be exposed to a traumatic event at some time in their lives. One study found that by the age of 11, 11% of youth have experienced a traumatic event. By the age of 18, 43% of youth have experienced such an event (“Identifying and addressing trauma in adolescents,” 2007). This means that during adolescence, there is a dramatic increase in the exposure to trauma.

What is trauma?

Regardless of the source, emotional or psychological trauma develops from being exposed to an incident in which there is a threat to survival and adaptation (Silove, Steel, & Psychol, 2006). Researchers usually separate traumas into two different types: event trauma and process trauma. An event trauma is a sudden, unexpected, stressful event that is limited in its duration and location. A hurricane or a fire, for instance, is an event trauma. Process trauma is defined as continued exposure to a long-lasting stressor, such as war or physical abuse (Shaw, 2000).

The National Institute of Mental Health describes trauma as a normal reaction to an extreme event (Substance Abuse and Mental Health Services Administration, 2007). It is important to remember that it is not necessarily the event itself that causes trauma, but a person's thoughts, feelings, beliefs, and experience surrounding that event (Boscarino, 1996).

What happens when someone is exposed to a traumatic event?

It is often easy to know when another person is having a bad day or battling minor emotional distress. During these times, it may be easy to lend a helping hand or a listening ear to try to comfort this individual. When a disaster or traumatizing event takes place, there is nothing normal or routine about it. This type of event may affect many people, normal interactions may be strained, and daily routines are often disrupted (Boscarino, 1996).

Typical reactions to traumatic experiences include fear and anxiety, sleep disturbances, physical complaints (such as headaches or stomach pain), antisocial behavior, depression and sadness, and fear of separation from loved ones (Boscarino, 1996). In families with children and teens, the impact of the event will depend on the extent to which it disrupts family functioning (Boscarino, 1996). Research has shown that response to traumatic stress is not purely emotional; there are also physiological and neurological components (Saltzman, Holden, & Holahan, 2005). One study on children's reactions to violence in their home showed that children who are exposed to violence had significantly higher heart rates than those who lived in nonviolent homes (Crane & Clements, 2005).
The impact of a traumatic event differs depending on the type of disaster or trauma, its suddenness, and its extent, as well as the person’s social surroundings, his or her past experiences, and his or her culture (Silove et al., 2006). Children and teens may experience trauma in different ways depending on their stage of development. There is no way to predict how someone will react to a traumatic event because we are all so different.

Adolescents and Trauma

This article focuses on trauma during adolescence. We single out this stage of development because there are many active changes happening during this stage of life. Adolescents are especially vulnerable to the effects of trauma, and trauma can have a significant impact on their development.

First, adolescents are at high risk for experiencing traumatic events (Crane & Clements, 2005). In addition to the traumatic stressors encountered by adults, adolescents are also at risk of trauma related to bullying and embarrassment in school, violence in the home and community, experimentation with drugs, and other risky situations (Shaw, 2000). Adolescents are trying to define who they are. In the course of discovering their identities, some adolescents engage in risky behavior and power struggles with parents and experience wide-ranging emotions (Hales & Yudofsky, 2003). However, because of the behavioral issues that can occur during adolescence, people may overlook the emotional needs of this population (Crane & Clements, 2005). It is very important for parents, teachers, community leaders, and first responders to be aware of the needs of adolescents in times of crisis, stress, and trauma.

Second, trauma experienced by adolescents is particularly important because significant physical and emotional growth is occurring at this age (Hales & Yudofsky, 2003). The stressors that an adolescent encounters will help to shape his or her growth and perspective, and can have long-lasting impacts (Crane & Clements, 2005). For example, adolescence is a time of increased brain development (Hales & Yudofsky, 2003). There is evidence that the stress associated with traumatic events can change major structural components of the central nervous system and the neuroendocrine system (Shaw, 2000). Severe traumatic stress affects the chemicals in the brain and can change brain structures, leaving a lasting effect (Spear, 2000).

Furthermore, adolescence is also a time of social and emotional development. Struggling with the effects of a traumatic event during adolescence can lead to social isolation, declining school performance, behavioral problems, and other issues that can impact both current quality of life and future functioning.

It has also been found that those adolescents who have experienced trauma as a child are more likely to develop anxiety-related disorders and fears and are more likely to show a pattern of risky sexual behaviors (“Identifying and addressing trauma in adolescents,” 2007). An increase in risk-taking behaviors is sometimes seen in adolescents following trauma (Norwood, Ursano, & Fullerton, 2000).

The Special Case of Post-Traumatic Stress Disorder

Although not everyone who experiences a traumatic event develops Post-Traumatic Stress Disorder (PTSD), it is important to understand that there is a risk for developing this disorder after exposure to trauma. In order to get a diagnosis of PTSD, a person must be exposed to a traumatic event that involved a threat of serious injury or death and that caused the person to experience great fear and helplessness (American Psychiatric Association, n.d.). In addition to exposure to a traumatic event, the following symptoms must be experienced for more than 30 days and cause significant distress or impairment:

- Intrusive symptoms related to the traumatic events (e.g., repeated distressing thoughts, flashbacks, or recurring dreams about the event)
- Avoidance of related events or scenarios.
- Negative moods or thoughts related to the event
- Increased physiological arousal (e.g., easily startled, irritable, problems sleeping or concentrating); American Psychiatric Association, 2013).

It is thought that the two strongest predictors of PTSD are exposure to violence and the sudden or unexpected death of a loved one (American Psychiatric Association, 2013). Of these two, unexpected loss of a loved one is most associated with PTSD (American Psychiatric Association, 2013). It has also been found that human-caused traumas (such as terrorism or other violence) are more damaging to mental health than naturally occurring traumas (such as weather-related events or accidents) (Wiesath, 1995),

Exposure to trauma and the presence of PTSD affects memory and learning (Yasik, Saigh, Oberfield, & Halamanaris, 2007; Moradi, Doost, Taghavi, Yule, & Dalgleish, 1999). Because the brain continues to grow throughout adolescence and adulthood, it is important to consider the effects of PTSD on this developmental process. Adolescents
who have experienced trauma or have PTSD are more likely to have problems in school and with processing information.

It has been found that many health care providers overlook PTSD in adolescents (Crane & Clements, 2005). This may be due to the fact that some behavior that commonly occurs in adolescence (e.g., rebelliousness, withdrawal) can look very similar to symptoms of PTSD. Also, it may be hard to figure out whether a teen is suffering from PTSD or depression. PTSD is different from depression in that it is marked more by fear and agitation than moodiness and withdrawal (“Identifying and addressing trauma in adolescents,” 2007). Even though there are subtle differences between depression and PTSD, an adolescent could suffer from both of these conditions at the same time. If you are unsure about whether a child is experiencing a significant problem related to trauma, make sure to get assistance from a licensed mental health professional.

How to Help Adolescents Cope with Trauma

The way an adolescent adapts to stressors has a lot to do with how well his or her family is functioning (Stern & Zevon, 1990). It has been found that when adolescents lack parental support, they are more likely to have behavioral problems and emotional distress (Garber & Little, 2001).

Boys and girls also experience and respond to trauma differently. Although males are more likely to be exposed to traumatic stressors, females are more likely to experience PTSD (Shaw, 2000; Crane, & Clements, 2005; Stuber, Resnick, & Galea, 2006).

To help adolescents overcome a traumatic event, action should be taken as soon as possible. In the wake of a disaster, teachers, parents, and/or mental health professionals should:

- Explore ways to protect the adolescent from further harm and further exposure. Create a safe place away from onlookers and media.
- Kindly but firmly direct children away from the site of violence or destruction, the severely injured, and any continuing danger.
- Provide support to adolescents who are showing signs of panic and intense grief, such as trembling, agitation, refusing to speak, loud crying, or rage. Stay with them until they are stabilized.
- Help the adolescent feel safe with supportive and compassionate verbal and nonverbal communication. These reassurances are very important.
- Provide information about the traumatic event in language that the adolescent can understand. This will help the adolescent to understand what happened and feel more in control (American Psychological Association, n.d.).

It was once thought that providing debriefing right after a traumatic event could be helpful in recovery. One of the most popular types of debriefing, Critical Incident Stress Debriefing (CISD), was widely used after the attacks of September 11th (Villalba & Lewis, 2007). However, recent research suggests that this type of intervention may not only be ineffective, but can cause harm to certain individuals by disturbing the natural coping process (Roth & Fonagy, 2006). Therefore, it is suggested that this method of treatment be avoided.

If you know of an adolescent who has been exposed to a traumatic event, the first step is to identify whether there is a need for intervention. It is important to remember that everyone is different. Some people may be able to deal fairly well with the situation at hand, while others may take years to overcome the emotional pain. Sometimes individuals try to hide or mask the fact that they are hurting emotionally. Reassure adolescents that needing help does not mean that a person is weak, incompetent, or sick (American Psychological Association, n.d.). A feeling that it is safe to express emotions can help prevent negative reactions, such as becoming frozen or overwhelmed (American Psychological Association, n.d.). At the same time, some people cope best by using distraction and avoidance; forcing these people to talk could negatively impact their ability to heal naturally (Roth & Fonagy, 2006).

Those adolescents who respond to trauma by showing significant anxiety, depression, aggression, school difficulties, or extreme withdrawal should receive an evaluation from a licensed mental health professional. Many people who experience trauma and/or PTSD show improvement in their symptoms after receiving individual counseling (Villalba & Lewis, 2007). Cognitive behavioral therapy entails discussion of thoughts and emotions, as well as re-experiencing some of the traumatic event. This form of therapy has been found to be particularly effective in treating adolescents with PTSD or exposure to trauma (Villalba & Lewis, 2007). There is some evidence that Eye Movement Desensitization and Reprocessing (EMDR) also helps in recovery from trauma (Roth & Fonagy, 2006). Some people may also benefit from the use of medications, such as
antidepressant or anti-anxiety medication. Currently there is research being conducted on the use of propranolol in cases of trauma. Preliminary evidence suggests that this medication may be useful in trauma recovery (Vaiva at al., 2003).

References

Here’s how to get rid of mold when your home has been hit by a disaster:

1. **Wear protective gear.** Gloves, goggles, pants, a long-sleeved shirt and a respirator rated N95 or higher are recommended to avoid breathing or touching spores.
2. **If your insurance covers mold damages or cleanup costs, take photographs before cleaning up.**
3. **Seal off moldy areas.** Cleaning up mold can cause a large release of spores into the air. Open windows, turn off the AC and tape plastic over air grilles to prevent their spread.
4. **Remove moldy, porous materials.** These include:
 - Carpeting
 - Upholstery
 - Fabrics
 - Mattresses
5. **Clean and disinfect nonporous materials.** Follow label directions and warnings, wear rubber gloves, and never mix cleaning materials. Don’t use bleach in the air conditioning system or with ammonia or acids. Use a solution of ½-1 cup chlorine bleach per gallon of water on colorfast, nonmetal surfaces. Use alcohols and hydrogen peroxide on materials that may potentially be damaged by bleach.
6. **Air out your home.** Use fans in windows to pull spores out.
7. **Dry all wet materials as quickly as possible.** Close windows, turn on the AC and fans, and use a dehumidifier. If your home is without power, keep windows open.

For more information, visit http://edis.ifas.ufl.edu/fy1044 or http://www.lsuagcenter.com/profiles/kkramer/articles/page1487879426120
LIMPIANDO MOHO DESPUÉS DE UNA INUNDACIÓN

Así es como se quita el moho después de un desastre natural:

1. Usa equipo de protección. Guantes, gafas de protección, pantalones, una camisa manga larga y un respirador de un índice de N95 o más para evitar respirar y tocar las esporas.

2. Si su seguro cubre el daño o la limpieza de moho en su hogar, tome fotos antes de limpiarlo.

3. Sella todas las áreas que tenga moho. Limpiando moho puede soltar bastantes esporas en el aire. Abre las ventanas, apague el aire acondicionado y pega con cinta adhesiva un plástico sobre las ventilaciones para evitar la propagación de las esporas.

4. Quita todo material mohoso y poroso.
 - Alfombras
 - Tapicerías
 - Telas
 - Colchones

5. Limpia y desinfecte todo material que no es poroso. Sigue las instrucciones de las etiquetas y sus avisos. Use guantes de goma y nunca mezcle productos de limpieza. No use lejía en el sistema del aire acondicionado ni amoníaco o ácidos.

7. Seca todo material mojado lo más rápido posible. Cierra las ventanas, apaguen el aire acondicionado y los ventiladores y usa un deshumidificador. Si no tiene luz, mantenga las ventanas abiertas.

Hurricanes and Mosquitoes

C. Roxanne Connelly

Why Does Florida Experience Such High Numbers of Mosquitoes After a Hurricane?

Mosquitoes go through four developmental stages during their life: eggs, larvae, pupae, and adults. Dozens of species of mosquitoes reside in Florida, and the different species have differing means of surviving.

In addition to many environmental variables, there are two biological attributes related to mosquito egg-laying that contribute to the numbers of mosquitoes seen and felt during a post-hurricane period. The attributes separate mosquitoes on the basis of the conditions in which they lay their eggs. The two groups are floodwater mosquitoes and standing-water mosquitoes.

Floodwater Mosquitoes

Many people associate mosquitoes strictly with standing water, with the belief that mosquitoes have to have water to lay their eggs. The fact is, mosquito eggs need water to hatch—but some species lay their eggs in moist soil (not standing water) and actually the eggs need to dry out before they can hatch. These mosquitoes are the “floodwater” species.

As far back as one year from the time the floodwater mosquitoes are noticeable, the adult female mosquitoes were flying around, feeding on blood, and laying eggs (one female floodwater mosquito has the potential to lay 200 eggs per batch) in moist areas of pastures, citrus furrows, salt-marsh, and swales. These moist areas eventually dry out, and the mosquito eggs also dry and become encased in the cracks and crevices of the dried mud. Because of their unique biology, the eggs need to dry out before they can hatch into larvae. The eggs survive in the dry soil through the winter and spring, and then with rains from storms or hurricanes, those areas are inundated with water. The water that reaches the eggs provides a cue to hatch.

Figure 1. Floodwater mosquito eggs (Aedes epactius).
Credits: S. McCann (UF/IFAS/FMEL)
One can consider the potential extent of this habitat by thinking about how much land in Florida is pasture, citrus grove, or large expanses of uninhabited flat land. There are estimates of the number of mosquito eggs in a floodwater habitat between 0.7 and 1.3 million eggs per acre. Yes—per acre. If only a small percentage of those eggs hatched and survived to the adult stage, the number of adult mosquitoes flying around looking for blood at one time is almost incomprehensible.

Unfortunately, for those who are diligent about dumping water and cleaning up containers around their home, this type of local and small scale effort will not contribute much impact to reducing mosquitoes in the floodwater sites.

Standing Water Mosquitoes

Mosquitoes that are not in the floodwater group lay their eggs on standing water. Another difference between the two groups is that mosquito eggs in this category cannot withstand drying out. If the water dries up, or the egg gets stranded on the grass or soil, the egg dries and that will be the end; it will not hatch into a larva.

Females will lay their eggs on the water surface and the eggs will typically hatch in about 24 hours. Water is necessary to complete the life cycle, and soon the larva will change into a pupa and then emerge into an adult that will soon be hungry for blood. After the newly emerged female mates and finds a blood source, she can start the cycle all over again by laying her eggs on the standing water.

The Double Whammy

The combination of the egg-laying habits of these two groups of mosquitoes provides for a double whammy put in place by activity that occurred with hurricanes and tropical storms. When dry areas flood, the floodwater mosquito eggs hatch. When the floodwater has nowhere to go, the standing-water mosquitoes have more places to lay their eggs.

What Can Individuals Do To Relieve Mosquito-Biting Pressure?

Draining water is recommended for reducing mosquito habitats. But just how are you going to drain an acre full of water? The recommendation to dump the water applies to mosquitoes that lay their eggs in water-holding containers that individual homeowners have control over, such as pet dishes, vases, and cans. The advice is good for average, everyday situations—that is, the times when Florida has not been in the path of a hurricane or tropical storm. The mosquito habitats resulting from the types of rain events from hurricanes are too vast for an individual homeowner to attempt to impact. It is best to leave the source reduction and treatment of such vast water sources to the mosquito control agencies.

In counties that have mosquito-control programs, help may not be immediate because there are such large areas that may need to be treated. And it may not be permanent—remember that mosquitoes fly. Even though an area may be treated to knock down the biting mosquitoes, there will likely be re-infestations from other areas due to the widespread flooding in the state.
The most effective way to stop a mosquito from biting is by wearing an effective mosquito repellent on the exposed portions of the body. Protective clothing is often mentioned as a deterrent, but during the very warm summer and fall evenings in Florida, especially for those who may not have electricity, long sleeves and long pants may not be practical.

The second best advice is to stay indoors. Check for damage to your home from the storms that may not be obvious. Look for holes in window and door screens; check for any newly formed open areas around your roof and windows where mosquitoes may gain access indoors; if you have pets that have access to both indoors and outdoors, brush their coats with your hands before they come inside to remove any mosquitoes that may be hanging on.
I. General Safety Tips

Do not work alone
Cleanup is dangerous. Always work with a partner.

Assemble a well-stocked first-aid kit
Learn how to use it and keep it nearby.

Avoid overexertion
Overexertion is the most common cause for injury. Avoid lifting over 50 pounds. Remember to lift with the legs and not the back.

Homeowner: stay safe!
Homeowners are seriously injured trying to do their own tree work. It is always a good idea to consult a professional before undertaking any major restoration or removal. Professional tree workers are required by law to wear personal protective equipment: hard hat, gloves, goggles, chaps, and appropriate footwear (see the Personal Protective Equipment section). If you decide to do some of the cleanup yourself, remember to follow these guidelines:

- Do not use a chain saw if you are not experienced in operating it or if you are not physically fit.
- If you must use a chain saw, work only on the ground.
- Never do any tree work that involves felling trees, climbing of any kind, or using ropes. Get a professional to help you with these situations.

Figure 1
Homeowners can clear debris to help professionals perform their specialized work.
II. Create a Safe Work Zone

Survey the site
Identify potential hazards and discuss where there is potential for injuries. Agree on communication signals before you start to work.

Set a perimeter around the work area
Mark an area that is two times the height of the tree. More distance is required when felling trees or dropping limbs.

Mark the area
Use tape or cones and keep non-workers safely outside this area (Figure 1).

III. Chain Saw Safety

Chain saws are considered the most dangerous hand tool available. The risk of injury increases during hurricane cleanup when chain saws are widely used to remove trees and branches. Use these guidelines to avoid injuries:

Keep both hands on the handles
Many chain saw injuries affect the hands and are the result of using the saw with just one hand.

Follow manual instructions carefully
This will ensure safe operation and proper equipment maintenance.

Take the time to do the job right
Most injuries affect the legs and feet and are the result of aggressive or careless cutting. Take breaks when needed, because most injuries occur when workers are fatigued.

Wear the appropriate personal protective equipment
Appropriate equipment includes: protective glasses and face shield, protective head gear, hearing protection, gloves, leg chaps, heavy work boots (see Personal Protective Equipment section for details).

Cut at waist level or below
Chain saw injuries to the head often result from making overhead cuts (Figure 3).

Take extra care when cutting limbs
Limbs that are bent, twisted, or caught under another object may snap back and hit you or pinch the saw.

Shut off equipment
Turn off chain saw when fueling it, carrying it a distance of more than 100 feet, or carrying it through slippery areas or heavy brush.

Be sure the chain saw operator is aware of your presence before you approach
Chain saw operators often cannot see or hear the approach of other people.
IV. Personal Protective Equipment

The correct use of the personal protective equipment reduces the likelihood of injury by covering key areas of the body.

Kickback occurs when the upper tip of the guide bar contacts an object and causes the saw to come straight back at the operator. It happens so fast that there is no time for reaction.

To prevent kickback, cut with the part of the bar closest to the engine. Watch where the tip is at all times—do not let it contact the ground or other branches (Figure 4).

Figure 4

Do not cut with the upper tip of the saw—contact with other branches can cause kickback.

Figure 5

All tree workers should wear the appropriate clothing and footwear.

© 2003 HOT PIXEL PRESS/ARBOR GLOBAL LLC

This document is FOR 115, one of the Urban Forest Hurricane Recovery series of the School of Forest Resources and Conservation and the Environmental Horticulture Department, UF/IFAS Extension. Original publication date January 2007. Reviewed September 2015. Visit the EDIS website at http://edis.ifas.ufl.edu and http://hort.ifas.ufl.edu/treesandhurricanes.

Eliana Kampf, urban forester, School of Forest Resources and Conservation; Astrid Delgado, urban forester landscaping specialist, School of Forest Resources and Conservation; Carol Lehtola, associate professor and state Extension agricultural safety specialist, Department of Agricultural and Biological Engineering; Mary Duryea, professor, School of Forest Resources and Conservation and Associate Dean for Research; UF/IFAS Extension, Gainesville, FL 32611

Design and layout: Mariana Wallig & Julie Walters

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office.

U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.
I. Sugerencias Generales en Seguridad

No trabaje solo
La limpieza después de un huracán es peligrosa. Trabaje siempre acompañado.

Prepare un buen botiquín de primeros auxilios
Aprenda a usarlo y manténgalo cerca.

Evite sobre esforzarse
Sobre esforzarse es la causa más común de las lesiones. Evite levantar más de 50 libras. Recuerde levantar con las piernas, no con la espalda.

Dueños de residencias: ¡Manténganse seguros!
Los propietarios de las residencias resultan seriamente lesionados tratando de hacer el trabajo ellos mismos. Una buena idea es consultar un profesional antes de empezar cualquier trabajo de restauración o remoción. Los trabajadores profesionales de árboles tienen que usar por ley el equipo de protección personal (PPE, por sus siglas en inglés): casco, guantes, gafas de seguridad, chaparreras y zapatos adecuados (vea la sección de Equipo de Protección Personal). Si decide hacer la limpieza usted mismo, recuerde seguir estas sugerencias:

· No use una motosierra si no tiene experiencia en su operación o si no está físicamente apto para hacerlo.
· Si tiene que usar una motosierra, trabaje solamente en el suelo.
· Nunca haga un trabajo que involucre la tala de árboles, cualquier clase de trepa o el uso de cuerdas. Consiga un profesional para que le ayude en estas situaciones.

Figura 1
Los dueños de residencias pueden limpiar los escombros para ayudar a los profesionales a ejecutar su trabajo especializado.
II. Cree una zona de trabajo segura

Inspeccione el sitio
Identifique los riesgos potenciales y discuta con su equipo al respecto. Acuerde señales para la comunicación con los demás antes de empezar a trabajar.

Asigne un perímetro alrededor del área de trabajo
Marque un área que sea del doble de la altura del árbol. Cuando hay árboles o ramas grandes cayendo se requiere de una distancia mayor.

Demarque el área
Use cinta o conos y mantenga seguras y fuera del sitio a las personas que no están trabajando (Figura 2).

III. Seguridad al usar la motosierra

La motosierra es considerada la herramienta manual disponible más peligrosa. El riesgo de accidentes se incrementa durante la limpieza después de un huracán cuando las motosierras son ampliamente usadas para remover árboles y ramas. Use esta guía para evitar accidentes:

Mantenga ambas manos en las manijas
Muchos de los accidentes que afectan las manos son el resultado de usar la motosierra con una sola mano.

Siga cuidadosamente las instrucciones del manual
Ésto le garantizará una operación segura y un mantenimiento apropiado del equipo.

Tómese el tiempo para hacer un buen trabajo
La mayoría de las lesiones que afectan las piernas y los pies son el resultado de cortes agresivos hechos sin cuidado. Descanse cuando lo necesite, porque la mayoría de los accidentes ocurren cuando los trabajadores están fatigados.

Use el equipo apropiado de protección personal
El equipo adecuado incluye: gafas de seguridad y pantalla protectora para la cara, casco, protección para los oídos, guantes, cahaparreras y botas para trabajo pesado (Para más detalles, vea la sección de Equipo de Protección Personal)

Corte a la altura de la cintura o por debajo
A menudo las heridas ocasionadas con la motosierra en la cabeza son el resultado de hacer cortes por encima de ésta (Figura 3).

Ponga especial cuidado cuando corte ramas
Las ramas que están inclinadas, torcidas o atrapadas debajo de otro objeto, pueden partirse y golpearlo repentinamente o tratar la motosierra.

Apague el equipo
Apague la motosierra cuando la esté llenando de combustible o cuando lo esté transportando a una distancia mayor de 30 metros (100 pies) o a través de áreas resbalosas con mucha maleza.

Asegúrese de que el operador de la motosierra sabe cuando alguien se le aproxima
Los operarios de la motosierra usualmente no pueden ver o escuchar cuando otras personas se les acercan.
El retroceso ocurre cuando la punta superior de la barra guía de la motosierra toca un objeto y hace que ésta se devuelva hacia el operador. El contragolpe sucede tan rápido que no hay tiempo de reaccionar.

Para prevenir el retroceso, corte con la parte de la barra más cercana al motor. Mire todo el tiempo dónde está la punta – no la deje tocar el piso u otras ramas (Figura 4).

IV. Equipo de Protección Personal

El uso correcto del equipo de protección personal reduce la probabilidad de accidentes al cubrir las partes claves de su cuerpo.

Figura 4

No corte con la punta superior de la barra de la motosierra - su contacto con otras ramas puede ocasionar el retroceso.

Figura 5

Todos los trabajadores deben usar la ropa y zapatos apropiados.
Be Safe: Hire a Tree Expert

Tree Care Professional

Tree care professionals with adequate equipment and insurance can handle these situations:

- Taking trees down in open areas.
- Removing dead or hazardous limbs.

Certified Arborist

Situations that require advanced training and are best handled by ISA certified arborists are:

- Removing a leaning tree or broken limb that is near a potential target.
- Reaching limbs that require climbing.
- Restoring a damaged tree that could be saved.
- Pruning to promote good structure.
Hiring an Arborist

Hiring an arborist is a worthwhile investment. Trees increase property value when they are well maintained but can be a liability if poorly pruned or unhealthy.

Beware of scams!

Unqualified individuals wanting to make a quick dollar may bring chain saws and equipment to help clean up after the storm. However, qualified arborists from around the country also come to help. Learn to identify the qualified arborists because unqualified workers may get hurt or cause irreparable damage to trees.

Use these questions to help you find a qualified arborist:

Insurance

1. Are you insured for property damage, personal liability, and worker’s compensation?

If you hire an uninsured company, you may be held responsible for medical bills and lost wages for injured workers.

Certification and Training

2. Are you certified by the International Society of Arboriculture (ISA)?

Being certified requires professional experience and knowledge of the best techniques in the industry. Arborists attend training courses and continuing education classes to learn the latest research.

3. What are the ANSI Z133.1 and ANSI A300 guidelines?

The American National Standards Institute (ANSI) prints these two guidelines, with which all tree care professionals should be familiar. ANSI Z133.1 represents safety standards for tree care operations in the United States. ANSI A300 represents the best management practices in the industry for pruning and other tree care operations.

Estimates

4. What are the procedures involved, equipment used, price, and time frame?

Get more than one written estimate. Keep in mind that specialized equipment, qualified skills, and insurance will cost more. Good tree work is worth the additional investment; poor work may cost more in the long run.

Homeowner: Stay Safe!

Homeowners are seriously injured trying to do their own tree work. It is always a good idea to consult a professional before undertaking any major restoration or removal. Professional tree workers are required by law to wear personal protective equipment: hard hat, gloves, chaps, and appropriate footwear. If you decide to do some of the cleanup yourself, remember to follow these guidelines:

- Do not use a chain saw if you are not experienced in operating it or if you are not physically fit.
- If you must use a chain saw, work only on the ground.
- Never do any tree work that involves felling trees, climbing of any kind, or using ropes. Get a professional to help you with these situations.

Hire a certified arborist for major restoration and removal efforts.

Homeowners can clear debris to help professionals perform their specialized work.
Electrical Hazards

Trees can uproot underground utilities and tear down power lines during hurricanes. The combination of electrical wires and flooding creates a hazardous environment that requires extreme caution.

- **Only qualified line-clearance arborists are allowed to work near electrical lines.**
- Call the power company to report tree limbs that have fallen on a power line.
- **Assume all power lines are energized and do not touch. Improper use of generators may energize lines without warning.**
- Beware! Electrocution may occur if any part of your body touches a conductor (water, tool, tree branch, fence, etc.) in contact with an energized power line.

To find a certified arborist in your area, contact:

International Society of Arboriculture (ISA)

http://www.isa-arbor.com

(217) 355-9411 or (888) 472-8733
(941) 342-0153 (in Florida)

Florida Cooperative Extension Service County Offices

http://solutionsforyourlife.ufl.edu/map/

Figure 5

Only qualified line-clearance arborists can work on trees near power lines.
CONSIGA EL PROFESIONAL CORRECTO PARA EL CUIDADO DE LOS ÁRBOLES

Esté Seguro: Contrate a un Experto en Árboles

Profesional en el Cuidado de los Árboles

Los profesionales en el cuidado de los árboles con un equipo adecuado y asegurados pueden manejar estas situaciones:
· Tumbar árboles en áreas abiertas.
· Remover ramas muertas y peligrosas.

Arboricultores Certificados

Las situaciones que requieren entrenamiento avanzado, son mejor manejadas por arboricultores certificados de la Sociedad Internacional de Arboricultura (ISA, por sus siglas en inglés):
· Remover un árbol inclinado o ramas partidas que están cerca de una casa u otro objetivo potencial.
· Alcanzar ramas que requieran trepar al árbol.
· Restaurar un árbol dañado que puede ser salvado.
· Podar para promover una buena estructura.

Figura 1
Si no hay espacio para cortar un árbol con seguridad, la situación requiere la ayuda de un profesional.

Figura 2
Los arboricultores certificados están entrenados para treparse a los árboles dañados y restaurarlos.

Programa de Restauración del Bosque Urbano Afectado por Huracanes
http://treesandhurricanes.ifas.ufl.edu
Cómo Contratar un Arboricultor

Contratar un arboricultor es una inversión que vale la pena. Los árboles incrementan el valor de las propiedades cuando están bien mantenidos, pero pueden ser un riesgo y representan una responsabilidad legal si están mal podados o enfermos.

¡Tenga cuidado con los estafadores!

Individuos no calificados que desean hacer dinero rápidamente, pueden traer motosierras y equipo para ayudar en la limpieza después de una tormenta. Sin embargo, al mismo tiempo, arboricultores calificados de todo el país también se pueden presentar a ayudar. Aprenda a identificar los arboricultores calificados porque los trabajadores no calificados pueden hacerse daño ellos mismos o causar daños irreparables a los árboles.

Haga éstas preguntas para ayudarse a encontrar un arboricultor calificado:

Seguro

1. ¿Está usted asegurado por daño a la propiedad, responsabilidad civil y compensación laboral?

Si usted contrata una compañía no asegurada, podría tener que responder por las cuentas médicas y el salario perdido de los trabajadores accidentados.

Certificación y Entrenamiento

2. ¿Tiene usted una certificación de la Sociedad Internacional de Arboricultura (International Society of Arboriculture, ISA)?

Para estar certificado se requiere de experiencia profesional y conocimiento de las mejores técnicas en la industria. Los arboricultores asisten a cursos de entrenamiento y clases de educación continua para aprender lo último que se ha investigado.

3. ¿Qué son los procedimientos ANSI Z133.1 y ANSI A300?

El Instituto Nacional Americano de Normas (The American National Standards Institute, ANSI) edita estas dos guías con las cuales todos los profesionales del cuidado de los árboles deben estar familiarizados. ANSI Z133.1 representa los estándares de seguridad para las operaciones de cuidado de los árboles en los Estados Unidos. ANSI A300 representa las mejores prácticas en la industria para la poda y otras operaciones en el cuidado de los árboles.

Estimados

4. ¿Cuáles son los procedimientos involucrados, el equipo a utilizar, el precio y el cronograma de actividades?

Consiga más de una cotización por escrito. Tenga en cuenta que el equipo especializado, los servicios calificados y el seguro costarán más. El buen trabajo en los árboles merece la inversión adicional. Un trabajo barato puede costar más a largo plazo.

Dueños de casa: !Manténgase seguros!

Los dueños de las casas a menudo resultan seriamente lesionados al intentar ejecutar ellos mismos el trabajo con los árboles. Siempre es una buena idea consultar con un profesional antes de abordar cualquier trabajo de remoción o restauración. Los trabajadores profesionales de los árboles, por ley deben usar el equipo de protección personal: casco protector, guantes, escudo protector para la cara, gafas de seguridad, chaperras y botas para trabajo pesado. Si usted decide hacer alguna labores de la limpieza, recuerde seguir las siguientes sugerencias:

- No use una motosierra si no tiene experiencia en ello o si no está físicamente preparado para hacerlo.
- Si tiene que usar la motosierra, trabaje solo en el suelo.
- Nunca haga ningún trabajo que involucre de alguna manera la tala o la trepa de árboles, o el uso de cuerdas. Consiga un profesional para que le ayude en estas situaciones.

Para encontrar un arboricultor certificado en su área contacte:

International Society of Arboriculture (ISA)

(Sociedad Internacional de Arboricultura)

http://www.isa-arbor.com

(217) 355-9411 o (888) 472-8733
(941) 342-0153 (en Florida)

Florida Cooperative Extension Service County Offices

(Oficina del Condado del Servicio de Extensión Cooperativa de la Florida)

http://solutionsforyourlife.ufl.edu/map/
Peligros Eléctricos

Durante los huracanes, los árboles pueden desenterrarse y arrancar los cables eléctricos subterráneos, tumbar los postes de servicios públicos y tirar al suelo las líneas eléctricas. La combinación de cables eléctricos e inundaciones crea un ambiente peligroso que requiere de muchísima precaución.

- Sólo arboricultores calificados en la restauración de líneas eléctricas, están autorizados para trabajar cerca de los suministros de servicios públicos.
- Llame a la compañía de electricidad para reportar las ramas de los árboles que han caído sobre las líneas eléctricas.
- Asuma que todas las líneas eléctricas están energizadas y no las toque. El uso inapropiado de generadores puede energizar las líneas sin previo aviso.
- ¡Esté alerta! La electrocución ocurre si alguna de las partes de su cuerpo toca un conductor de energía (agua, herramientas, ramas de árboles, cercas de metal, etc.) que esté en contacto con una línea eléctrica energizada.
Introduction

Right after a hurricane, communities and homeowners need to decide what to do with storm-damaged trees. Although damaged trees may seem to be dying, some trees can be restored, others will need to be removed, and still others will not require any special treatment and can be left alone.

The factors that should be considered when deciding whether to remove or restore storm-damaged trees are discussed in detail in this fact sheet. Use this information to help you make an informed decision about how to treat your damaged trees after a storm.

I. Setting Priorities Immediately after the Storm

Immediately following a storm, trees need to be sorted out into priority groups. We will discuss situations that require immediate attention as well as those that can be treated later.

The most important priority is to determine if the tree poses a safety hazard to humans or animals or is endangering property. Trees become a potential hazard when a target—a structure, vehicle or a person—could be struck by a falling tree or any of its parts. Therefore, a hazard tree is any tree that if it falls would result in damage to property, people or other valuable trees.

Contents

<table>
<thead>
<tr>
<th></th>
<th>Setting Priorities Immediately after the Storm</th>
<th>p. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Factors to Consider When Deciding Whether to Remove or Restore a Tree</td>
<td>p. 5</td>
</tr>
<tr>
<td>III</td>
<td>When to Remove a Tree</td>
<td>p. 10</td>
</tr>
<tr>
<td>IV</td>
<td>When to Restore a Tree</td>
<td>p. 12</td>
</tr>
<tr>
<td>V</td>
<td>Assessing Pines</td>
<td>p. 16</td>
</tr>
<tr>
<td>VI</td>
<td>Assessing Palms</td>
<td>p. 16</td>
</tr>
</tbody>
</table>

The Urban Forest Hurricane Recovery Program http://treesandhurricanes.ifas.ufl.edu
Immediate Attention

The situations depicted in these photos are highly dangerous and should be taken care of immediately. The trees shown in Figures 1 and 2 need to be removed, while the tree in Figure 3 needs to be pruned as soon as possible.

In these situations, the work should be performed by a certified arborist or properly trained professional.
Follow-up

Keep in mind that many trees can be saved with appropriate treatment. There is no need to rush out and remove trees that do not pose an immediate safety hazard. Trees can recover from substantial damage, and what looks awful at first may be judged as much less serious by an experienced professional.
Who Should Clean Up after the Storm?

Now that we have discussed setting up priorities, it is important to get the right tree care professional for the job. Homeowners should not attempt to do all the work themselves, like the man in Figure 7.

Certain situations require advanced training and are best handled by arborists certified by the International Society of Arboriculture (ISA). These include removing a leaning tree or broken limb near a house or other target, restoring a damaged tree that could be saved, evaluating a tree hazard potential, reaching limbs that require climbing and pruning. Likewise, only qualified line-clearance arborists should work near electrical utilities. Call the power company to report tree limbs that have fallen on or are hanging over a power line.

Keep in mind that storm damage cleanup is extremely dangerous, even for professionals. Numerous injuries and deaths occur during cleanup after storms. When working with trees in the aftermath of a hurricane, it is essential to look up, down and around. Beware of dangerous broken limbs that are hanging or caught in other branches overhead and may fall. Safety should be a priority.

Not All Trees Need to Be Cut Down!

A common reaction after a wind storm is to remove all trees to avoid future problems (Figure 8), especially if a tree has fallen on a home or other valued property. However, not every tree poses a high risk. Unfortunately, few communities and decision-makers realize that the benefits of trees in the urban forest in the long term far outweigh the costs needed to pay arborists to care for trees.

It has been observed that a grouping of well-placed, healthy trees may actually help redirect winds and serve as a protective barrier for homes (Figure 9). Communities with a well-maintained urban forest may suffer less damage after hurricanes than those without maintenance. Having an active management program reduces the losses from winds and establishes a restoration plan when damage does occur.
II. Factors to Consider When Deciding Whether to Remove or Restore a Tree

After all the safety concerns have been addressed, the most difficult part of responding to a storm is deciding which damaged trees should be pruned back to health and which trees should be removed. The eight items below are interrelated and together will help you determine the amount of care a tree will need after a storm. They will guide the decision of what trees should be removed and which ones can be restored.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Amount of Damage</td>
</tr>
<tr>
<td>b</td>
<td>Tree Size and Age</td>
</tr>
<tr>
<td>c</td>
<td>Tree Species</td>
</tr>
<tr>
<td>d</td>
<td>Tree Health</td>
</tr>
<tr>
<td>e</td>
<td>Tree Structure</td>
</tr>
<tr>
<td>f</td>
<td>Previous Cultural Practices</td>
</tr>
<tr>
<td>g</td>
<td>Site Conditions</td>
</tr>
<tr>
<td>h</td>
<td>Cultural Value</td>
</tr>
</tbody>
</table>

a. Amount of Damage

Trees with more damage will require more work than those with less damage.

What parts of the tree were affected, how much of the canopy is gone and how big the wounds are will determine the amount of care needed. The larger the wound is in relation to the size of the limb, the more vulnerable the tree is to decay, diseases and pests (Figures 10 and 11).

b. Tree Size and Age

Younger and smaller trees will take less time to restore than more mature and larger trees.

Younger and smaller trees survive winds better and suffer less damage than older trees, making them better candidates for restoration pruning (Figure 12).

On the other hand, older, more mature trees may have accumulated multiple defects (e.g., bark inclusions, cracks, and extensive decay) over the years, often making them very susceptible to damage in storms.
c. Tree Species

Trees that resist decay are better candidates for restoration than those prone to decay.

Trees that resist the spread of decay into their wood are called good compartmentalizers, and are more easily restorable. Examples include live oak (*Quercus virginiana*), mahogany (*Swietenia mahogani*), false tamarind (*Lysiloma latisiliquum*), winged elm (*Ulmus alata*) and buttonwood (*Conocarpus erectus*) (Figure 13).

On the other hand, poor compartmentalizers are trees prone to decay, such as African tuliptree (*Spathodea campanulata*), Hong-Kong orchid (*Bauhinia blakeana*), redbay (*Persea borbonia*), laurel oak (*Quercus laurifolia*) and water oak (*Quercus nigra*) (Figure 14). These species may be problem urban trees since large pruning cuts, trunk injuries and root damage can result in hollows and extensive internal decay in their roots and trunks.

FOR A LIST OF GOOD AND POOR COMPARTMENTALIZERS

Visit [this website](http://hort.ifas.ufl.edu/woody/compartmentalization.html) for a list of good and poor compartmentalizers.

Short-lived species may not be worth restoring.

Every tree species has an inherent life span and some tree species live longer than others do.

Longevity should be considered when evaluating whether a tree is worth restoring or should be removed (Figure 15). Usually short-lived trees also do not compartmentalize decay well. Keep in mind that risk of failure increases with age.

Table 1. Life span of some species in the forest

<table>
<thead>
<tr>
<th>Short-lived (< 50 years old)</th>
<th>Medium-lived (50–100 years old)</th>
<th>Long-lived (> 100 years old)</th>
</tr>
</thead>
<tbody>
<tr>
<td>laurel oak</td>
<td>African tuliptree</td>
<td>live oak</td>
</tr>
<tr>
<td>red bud (Cercis canadensis)</td>
<td>paradise tree (Simarouba glauca)</td>
<td>sweetgum (Liquidambar styraciflua)</td>
</tr>
<tr>
<td>bottle brush (Callistemon spp.)</td>
<td>red maple (Acer rubrum)</td>
<td>southern magnolia (Magnolia grandifolia)</td>
</tr>
<tr>
<td>Hong-Kong orchid tree</td>
<td>gumbo limbo (Bursera simarouba)</td>
<td>baldcypress (Taxodium distichum)</td>
</tr>
<tr>
<td>jacaranda (Jacaranda mimosifolia)</td>
<td>sea grape (Coccoloba uvifera)</td>
<td>mahogany</td>
</tr>
</tbody>
</table>

* Note that urban trees have a shorter life span.
d. Tree Health

Healthy trees will recover better after storms than unhealthy ones.

Decay, a major cause of tree failure, is caused by fungi that weaken wood as they grow. Cracks, seams, butt swell, cankers, dead branch stubs and large, older wounds suggest internal decay and increase the likelihood of tree failure in wind. Decay is often present without obvious signs (Figures 16 and 17).

Mushrooms at the base of the tree trunk can be the sign of *Armillaria* or other fungi that can decay roots and create unstable trees (Figure 18). Root rot (Figure 19) can be identified with careful, regular inspections by accomplished arborists.

Did you know?

Decay is often present without obvious signs, but can be identified with careful, regular inspections by accomplished arborists.
e. Tree Structure

Trees with good remaining tree structure are worth saving and will be more easily restored.

One trunk up through the canopy, branches considerably smaller in diameter than the trunk, evenly spaced branches, balanced canopies, absence of codominant stems and bark inclusions are all signs of a strong tree. These characteristics make trees better able to resist storms (Figure 20). Certified arborists are able to create and maintain such strong structure by appropriate pruning techniques, especially if they begin early in the tree’s life.

f. Previous Cultural Practices

Poor pruning practices make trees susceptible to failure and breakage.

Removing large branches results in large pruning cuts that can serve as entry points for fungi that begin the decay process (Figure 21). Topping is also a poor pruning practice that should be avoided. Sprouts that grow from topped trees are poorly connected to the cut stub, making them susceptible to breakage in storms (Figure 22).

Figure 20
This tree has a strong structure and it is a good candidate for restoring. There are four evenly spaced branches, smaller in diameter than the trunk.

Figure 21
A large pruning cut several years ago caused decay and created a weak spot where the tree eventually broke.

Figure 22
This tree was topped a year ago and the several sprouts that grew from the cut stem broke in the wind.
Poor root management practices will affect tree stability.

The importance of root integrity and health cannot be overemphasized. In addition to absorbing water and essential elements, roots anchor the tree. If roots are damaged in any way, the likelihood of failure increases (Figure 23). Construction activities within about 20 feet of the trunks of existing trees can cause the trees to blow over more than a decade later.

g. Site Conditions

Trees need adequate soil space and good soil properties to be stable.

Trees with root systems confined to relatively small soil spaces are not as stable as trees allowed to develop more extensive root systems (Figure 24).

Soil compaction, shallow soils, hardpans and a high water table restrict roots to shallow depths and can result in unstable trees (Figure 25).

Poorly located and/or chosen tree species may not be worth restoring.

The importance of selecting the right tree for the right location has been greatly stressed, and yet selection of inappropriate trees is one of the most common mistakes observed. For example, the white oak (*Quercus alba*) in Figure 26, which can grow to 100 feet and will develop wide-spreading crowns and numerous horizontal branches.

If the tree is in the wrong location (such as a tall tree beneath a power line), or if it is an undesirable species for the property (messy fruit, not drought-tolerant, etc.), it may be best to remove it if the tree sustained serious damage.

h. Cultural Value

How valuable the tree is to you and the community will determine the amount of restoration effort needed.

In addition to the economical value and ecological services that trees provide to the owner and community, the tree in question might be a memorial tree, or it may have a historical significance or some other cultural attribute associated with it (Figure 27).
III. When to Remove a Tree

In general terms, these are the situations when a tree requires removal after safety concerns have been addressed. Remember, the priority is to remove trees that represent a hazard to people and property.

1. The lower main trunk is cracked or broken

Trees with cracks in the main trunk and branches are very dangerous, since limbs with this type of damage are not well-secured to the tree. Cracks well into the trunk (Figure 28) will not close and represent a severe defect that makes such trees a high risk in the landscape.

2. A large stem has split from the tree

Figure 29 shows a tree that needs to be removed because of the large codominant stem that split from the trunk. Notice the dark area at the top of the split—it is a bark inclusion (Figure 29). Bark inclusions are weak unions between branches and are very susceptible to breakage.

3. The tree is leaning towards a target

If a leaning tree is likely to fall on a person, building, power line, roadway or other valuable target, it should be removed immediately after the storm. However, all leaning trees should have their roots carefully examined for breakage, exposure or lifting out of the soil (Figure 30). Pay close attention to leaning trees with unbalanced canopies, cracks in the trunk and bark inclusions.

4. The remaining tree structure is highly susceptible to breakage

The tree shown in Figure 31 should be removed! It suffered major structural damage and the remaining tree structure is compromised. All the mass is on one side of the tree, and the trunk is very weak because of the two splits. The cause of both splits was a bark inclusion.
5. The major roots are severed or broken

Fallen or leaning medium-aged and mature trees usually suffer severe major root breakage. Once cut or broken, these roots will not reconnect well into the soil and are unlikely to develop the root structure needed to keep the tree erect (Figure 32). The reason for that seems to be that severed large-diameter roots do not regenerate new roots as well as small-diameter roots (one-inch-diameter or less). Also, large broken roots can decay or rot, making the tree unstable (Figure 33).

6. Large limbs are broken

Remove trees with most of the canopy damaged due to large-diameter (greater than 8 inches) branch breakage (Figure 34). Trees with small-diameter broken branches have a better future and can be restored (Figure 35).

7. Girdling roots are causing dead spots and cracks in the trunk

Roots circling the trunk are often referred to as girdling roots, and tree death could occur when the root encircles most of the trunk (Figure 36). Trees with circling roots and cracks in the trunk will be less stable than trees without these characteristics and should be removed.

Remember:

If you remove a tree, plant another one in its place!
IV. When to Restore a Tree

Even after experiencing high winds, many trees can be restored. However, only restore trees with major limbs, trunk and roots intact (Figures 37 and 38). To be a good candidate for restoration, a tree should have no cracks in major limbs or the trunk, no decayed wood, and no bark inclusions. Roots should not be exposed, lifted out of the soil, or girdle around the trunk. Make sure the branch and trunk structures were good prior to the storms.

These are general guidelines that will explain in detail when a tree should undergo restoration pruning:

1. **Trees are young**

 Young trees less than 10 inches in diameter, such as this live oak (Figure 39), make good candidates to restore because there are fewer branches to prune, the canopy is closer to the ground, and they can tolerate having more of their canopy removed than older trees.

2. **The canopy is defoliated**

 Trees that lose their leaves in a hurricane usually are not dead. Many trees generate new foliage in the weeks following the storm*. Research has shown that for some species, such as gumbo limbo and live oak (Figure 40), defoliation is usually a strategy for survival since it reduces wind resistance. Defoliated trees that were healthy before the storm with no major branch breakage require no special treatment. Wait. Time is the best treatment for this type of damage. There is no need to apply fertilizer or other chemicals.

 Trees and palms that were inundated with salt water often lose leaves due to root damage. In this case, trees need to be irrigated to wash salts through the soil.

*Note: Some species, such as pines, may not recover their foliage after hurricanes. See Pines (page 16) for more information.

Figure 37
This tree is restorable. It has one stem well up into the canopy with no codominant stems, well-spaced limbs, and no bark inclusions. Its roots are well-distributed around the trunk, and there are no girdling roots.

Figure 38
Restoration is difficult for this tree because of its poor initial structure. This young 20-year-old multi-trunk live oak has codominant stems with bark inclusions that will be a real challenge to fix.

Figure 39
Younger trees survive winds better and suffer less damage than older trees because they are easier to prune and maintain.

Figure 40
Live oak loses most of its leaves during a wind storm.
Many new sprouts will eventually emerge on hurricane-damaged trees. Some trees wait to produce new foliage the following spring. Sprouts should be allowed to grow because they provide the energy the tree will need to recover (Figure 41) and they can be pruned later.

3. Small branches are broken or dead

Trees with small broken or dead branches (less than 4 inches diameter) can easily be pruned from the canopy and have a good chance of recovering. Trees with small branches have a better chance of recovering than large-diameter branches (greater than 8 inches diameter). If small, codominant stems are broken in the upper canopy without damage to the main trunk, the tree can also be restored (Figure 42).

4. Most of the canopy is damaged in decay-resistant species

Trees that resist decay well can lose much of their canopy and still recover from a storm. Even with \(\frac{3}{4} \) of their small branches (less than 4 inches diameter) broken or removed by a hurricane, many decay-resistant trees can be restored (Figure 43).

5. Some major limbs are broken in decay-resistant species

Many species good at resisting decay after they are wounded can be restored even with some major branch breakage (Figure 44).
6. Leaning or fallen trees are small or recently planted

Trees that have a trunk diameter smaller than 4 inches should be stood up as quickly as possible to prevent roots from drying out (Figure 45). Such small trees have a better chance of developing the proper root structure to keep them firm in the soil than bigger trees.

Recently planted trees can be uprighted at any size because they usually do not have large broken roots (Figure 46). These trees should be treated as a new planting and staked with the help of a professional.

What Tree Size Can Be Uprighted?

Experienced arborists who have stood trees up after storms are finding that those greater than 4 inches trunk diameter are more susceptible to falling over in subsequent storms than smaller trees. The reason for this appears to be due to lack of generation of new roots on large severed roots when compared to regeneration on small roots (one inch diameter or less). Also, large severed roots can decay or rot more easily.

Table 2 shows general basic guidelines based on arborists’ and other tree professionals’ observations. Keep in mind, however, that there is no published research or definitive answers on this topic yet.

Table 2. Guidelines for standing up trees based on trunk diameter.

<table>
<thead>
<tr>
<th>Trunk diameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 4 inches</td>
<td>Stand up and stake</td>
</tr>
<tr>
<td>From 4 inches to 8 inches</td>
<td>Maybe stand up and stake Could be a hazard later</td>
</tr>
<tr>
<td>More than 8 inches</td>
<td>Not recommended Likely to be a hazard later</td>
</tr>
</tbody>
</table>

FOR MORE INFORMATION ➞

ON HOW TO STAND, STAKE, AND IRRIGATE FALLEN TREES

Restoring Trees after a Hurricane

Table 4 shows general basic guidelines based on arborists’ and other tree professionals’ observations. Keep in mind, however, that there is no published research or definitive answers on this topic yet.

Figure 45

This leaning elm (*Ulmus spp.*) could be stood up and staked.

Figure 46

Recently planted trees, such as this red maple, should be treated as a new planting by staking and watering properly.
Look for Circling Roots in Small Leaning or Downed Trees

Before deciding whether to stand small leaning or downed trees up, look for the presence of circling roots. Some circling roots can be removed and the tree will respond with increased vigor (Figure 47). Other trees will need to be removed (Figure 48). If roots circle around most of the tree trunk, the tree is not restorable because girdling roots inhibit secondary growth and the movement of water and photosynthates.

Figure 47
This tree can be restored since it only has one root circling the trunk. Before uprighting the tree, cut the circling root at the point just before it begins to circle, as indicated by the dotted line. This will allow new roots to grow away from the trunk, thus increasing the likelihood the tree will regain support.

Figure 48
This tree should be removed. Too much of the root system originates from the roots that are circling the trunk, making treatment impractical.
V. Assessing Pines

Pines are very sensitive to wind damage. Pines can snap, uproot or lean after storms. A pine still standing after a hurricane may have internal damage that is not visible. Before making a decision to remove or restore, wait and see if the tree lives, considering these points:

- Pines often die over a period of 6 months to 2 years after wind storms.
- Some may remain green for a year or even longer, then suddenly turn yellow (Figure 49) and progress to brown needles in a very short period.
- Pines with all brown needles are dead and should be removed.
- Monitor pines carefully for insects. Weakened pines may be more susceptible to beetles and diseases.

What causes yellowing of the needles and pine death?

The causes are not completely understood, but it is likely due to hidden damage produced by bending and twisting the trunk during hurricane-force winds. Prolonged winds may also rupture smaller roots without breaking the larger support roots. The injured stems and roots are unable to supply the water and nutrients needed in the crown, resulting in yellow needles and decline.

VI. Assessing Palms

Palms grow differently from other trees. The growing point of a palm is at the top of each trunk, surrounded by leaves (fronds). All fronds originate from this one point (bud). If the bud is severely damaged or killed, new leaves fail to develop and single-stemmed palms will die. On multi-stemmed palms, the undamaged trunks could recover if their buds are not damaged. If the trunk is snapped in half, the palm is dead. However, for palms left standing, the bud is often not accessible, making it difficult to determine whether it is damaged. For these palms, follow these guidelines:

- Allow at least 6 months for palms to put out new growth. New leaves may be stunted, discolored or abnormally shaped.
- It may take 1 to 2 years or more before palms appear normal with a full canopy.
- Irrigate 3 times a week for 6 weeks if there is not sufficient rainfall; longer if drought persists.

![The royal palms (Roystonea elata) circled in the back are dead since their buds are clearly destroyed. The palms in the front, however, can be restored by simply allowing them to grow.](image)

Recovery from a storm is not a quick process, so have patience with your palms.
Final Considerations

Right after a storm it is important to sort out trees into priority groups, acting immediately in situations that require urgent attention and selecting trees to be monitored and treated later on. Remember that even though hurricanes can be devastating to communities and urban forests, not all storm-damaged trees need to be removed and many trees can be treated and saved.

When assessing damage, think about it in terms of tree function and your objectives. Management actions will depend on observing the interrelated points below when deciding what trees to remove or restore:

- Soil space and soil properties
- Tree health, size and age
- Previous cultural practices
- Previous tree structure
- Amount of damage

Always observe safety procedures. Storm damage cleanup is extremely dangerous, even for professionals. Hire a certified professional to help with post-hurricane recovery and to implement a restoration pruning program.

Suggested Reading

Additional Resources

Trees and Hurricanes
http://treesandhurricanes.ifas.ufl.edu/

International Society of Arboriculture (ISA)
http://www.isa-arbor.com/

Florida AgSafe
http://www.flagsafe.ufl.edu/

Urban Forestry South Expo
http://www.urbanforestrysouth.org/

USDA Center for Urban Forest Research
http://www.fs.fed.us/psw/programs/cufr/

This document is FOR 117, one of the Urban Forest Hurricane Recovery series of the School of Forest Resources and Conservation and the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date January 2007. Reviewed February 2014. Visit the EDIS website at http://edis.ifas.ufl.edu and http://hort.ifas.ufl.edu/treesandhurricanes.

Eliana Kampf, Urban Forester, School of Forest Resources and Conservation; Mary L. Duryea, Professor, School of Forest Resources and Conservation and Associate Dean for Research, IFAS; Edward F. Gilman, Professor, Department of Environmental Horticulture; and Astrid Delgado, Urban Forester Landscaping Specialist, School of Forest Resources and Conservation; University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611

Design and layout: Mariana Wallig & Julie Walters
Introducción

Inmediatamente después de un huracán, las comunidades y los propietarios de casas necesitan decidir qué hacer con los árboles dañados por la tormenta. Aunque muchos de los árboles dañados parecen estar muertos, algunos se pueden restaurar, otros necesitarán ser removidos y habrá otros que no requieran de ningún tratamiento.

En esta publicación se discuten detalladamente los factores que deben ser considerados cuando se trata de decidir si remover o restaurar los árboles dañados durante una tormenta. Use esta información para ayudarse a tomar una decisión informada acerca de cómo tratar los árboles dañados después de un huracán.

Contenido

I. Establecimiento de prioridades inmediatamente después de una tormenta p. 1
II. Factores a considerar para decidir si remover o restaurar un árbol p. 5
III. Cuándo remover un árbol p. 10
IV. Cuándo restaurar un árbol p. 12
V. Evaluación de pinos p. 16
VI. Evaluación de palmas p. 16

I. Establecimiento de prioridades inmediatamente después de una tormenta

Inmediatamente después de una tormenta, los árboles deben ser clasificados en grupos por prioridades. A continuación se hablará de situaciones que requieren de atención inmediata, así como también las que pueden ser tratadas posteriormente.

Es prioritario determinar si el árbol es un riesgo para la seguridad de personas o animales, o si puede dañar alguna propiedad.

Los árboles se convierten en un peligro potencial cuando hay un objetivo—una estructura, vehículo o una persona—que puede ser golpeado si un árbol o partes de éste se caen. De ahí que, un árbol riesgoso es cualquier árbol que de caer dañaría propiedad, personas u otros árboles valiosos.
Atención inmediata

Las situaciones representadas en estas fotografías son altamente peligrosas y deben ser atendidas inmediatamente. Los árboles en las Figuras 1 y 2 necesitan ser removidos, mientras que el árbol en la Figura 3 necesita ser podado tan pronto como sea posible.

En estas situaciones el trabajo debe ser ejecutado por un arboricultor certificado con adecuado entrenamiento profesional.
Ya que no hay un objetivo en riesgo, este árbol puede ser removido más tarde.

Figura 4

Este árbol puede ser removido después, ya que no está bloqueando ninguna vía.

Figura 5

Este árbol puede ser tratado después, ya que no está ubicado en un área de mucho tráfico y no representa una amenaza inmediata.

Figura 6

Seguimiento

Tenga en cuenta que muchos árboles pueden ser salvados con el tratamiento adecuado. No hay necesidad de apresurarse a remover árboles que no representan un riesgo inmediato para la seguridad. Los árboles se pueden recuperar de daños graves y lo que parece horrible en un principio, puede ser juzgado menos serio por un profesional con experiencia.
¿Quién debe hacer la limpieza después de una tormenta?

Después de discutir el establecimiento de prioridades, es importante conseguir el profesional correcto para el cuidado de los árboles. Los dueños de las propiedades no deben intentar ejecutar el trabajo por ellos mismos, como el hombre en la Figura 7.

Ciertas situaciones requieren un entrenamiento avanzado y son manejadas mejor por arboricultores certificados de la Sociedad Internacional de Arboricultura (International Society of Arboriculture—ISA). Estas incluyen remover un árbol inclinado o una rama quebrada cerca de una casa u otro objetivo, restaurar un árbol dañado que puede ser salvado, evaluar el riesgo potencial de un árbol y podar. Así mismo, solamente arboricultores calificados en el despeje de líneas eléctricas pueden trabajar cerca de los servicios públicos. Llame a la compañía de electricidad para reportar las ramas de los árboles que han caído o están colgando sobre cables eléctricos.

Tenga presente que la limpieza después de un huracán es una actividad extremadamente peligrosa aun para profesionales. Muchos accidentes y muertes ocurren durante la limpieza después de las tormentas. Cuando se trabaja con árboles después de un huracán es esencial mirar arriba, abajo y alrededor. Tenga precaución con ramas peligrosas que están partidas, colgando, retorcidas o atrapadas debajo de otros objetos o en otros tallos arriba y pueden caer en cualquier momento. La seguridad debe ser lo primero.

¿Quién debe hacer la limpieza después de una tormenta?

Después de discutir el establecimiento de prioridades, es importante conseguir el profesional correcto para el cuidado de los árboles. Los dueños de las propiedades no deben intentar ejecutar el trabajo por ellos mismos, como el hombre en la Figura 7.

Ciertas situaciones requieren un entrenamiento avanzado y son manejadas mejor por arboricultores certificados de la Sociedad Internacional de Arboricultura (International Society of Arboriculture—ISA). Estas incluyen remover un árbol inclinado o una rama quebrada cerca de una casa u otro objetivo, restaurar un árbol dañado que puede ser salvado, evaluar el riesgo potencial de un árbol y podar. Así mismo, solamente arboricultores calificados en el despeje de líneas eléctricas pueden trabajar cerca de los servicios públicos. Llame a la compañía de electricidad para reportar las ramas de los árboles que han caído o están colgando sobre cables eléctricos.

Tenga presente que la limpieza después de un huracán es una actividad extremadamente peligrosa aun para profesionales. Muchos accidentes y muertes ocurren durante la limpieza después de las tormentas. Cuando se trabaja con árboles después de un huracán es esencial mirar arriba, abajo y alrededor. Tenga precaución con ramas peligrosas que están partidas, colgando, retorcidas o atrapadas debajo de otros objetos o en otros tallos arriba y pueden caer en cualquier momento. La seguridad debe ser lo primero.

¡No todos los árboles necesitan ser tumbados!

Una reacción común después de una tormenta es remover todos los árboles para evitar futuros problemas, especialmente si un árbol se ha caído sobre una casa u otra propiedad (Figura 8). Sin embargo, no todos los árboles son peligrosos. Desafortunadamente pocas comunidades y sus líderes se percatan de que los beneficios de los árboles del bosque urbano a largo plazo sobrepasan los costos necesarios del pago de un arboricultor para tratar los árboles.

Se ha observado que un grupo de árboles saludables, localizados correctamente puede ayudar a dirigir vientos fuertes y servir como una barrera protectora para las casas y otras estructuras (Figura 9). Las comunidades con un programa activo de manejo de su bosque urbano pueden reducir las pérdidas debidas al viento y establecer un plan de restauración cuando hay daños después de los huracanes.
II. Factores que se deben considerar al decidir si remover o restaurar un árbol

Una vez considerado todo lo concerniente a la seguridad, la parte más difícil después de una tormenta es decidir cuáles de los árboles dañados deben ser podados para que recuperen su bienestar y cuáles deben ser removidos. Los ocho puntos siguientes están relacionados y pueden ayudar a determinar la clase de cuidado que un árbol necesita después de una tormenta. Ellos pueden servir de guía en la toma de la decisión de cuáles árboles deben ser removidos y cuáles pueden ser restaurados.

a	Magnitud del daño	p. 5
b	Tamaño y edad del árbol	p. 5
c	Especie del árbol	p. 6
d	Salud del árbol	p. 7
e	Estructura del árbol	p. 8
f	Prácticas culturales previas	p. 9
g	Condiciones del sitio	p. 9
h	Valor cultural del árbol	p. 10

a. Magnitud del daño

Los árboles con mayor daño requerirán de más trabajo que aquellos con daño menor.

Las partes afectadas del árbol, cuánto se ha perdido de la copa y cuán grandes son las heridas, determinará el cuidado que el árbol necesita. Entre más grande sea la herida con relación al tamaño del tallo, más vulnerable es el árbol a la pudrición, las enfermedades y las plagas (Figuras 10 y 11).

b. Tamaño y edad del árbol

Los árboles pequeños y jóvenes toman menos tiempo para restaurarse que los más grandes y maduros.

Los árboles jóvenes y pequeños sobreviven mejor al viento que los más viejos. Por lo tanto, son mejores candidatos para una poda restaurativa (Figura 12).

Por otra parte, los árboles más viejos y maduros pueden tener acumulados por muchos años defectos múltiples (por ejemplo corteza incluida, grietas y pudrición extensiva) que los hacen muy susceptibles al daño en las tormentas.
c. Especie del árbol

Los árboles que resisten la pudrición son mejores candidatos para la restauración que aquellos que son propensos a ella.

Los árboles que resisten la diseminación de la pudrición en su madera se consideran que compartimentan bien y son más fáciles de restaurar. Algunos ejemplos incluyen el roble perenne (live oak, Quercus virginiana), la caoba (mahogany, Swietenia mahogany), el tamarindo falso (false tamarind, Lysiloma latisiliquum), el olmo alado (winged elm, Ulmus elata) y el mangle botón (buttonwood, Conocarpus erectus) (Figura 13).

Por otra parte, los árboles que no compartimentan bien son propensos a la pudrición. Algunos ejemplos de especies que no compartimentan bien son el tulipán africano (African tuliptree, Spathodea campanulata), la orquídea de Hong Kong (Hong Kong orchid, Bauhinia blakeana), el laurel rojo (redbay, Persea borbonia), el roble-laurel (laurel oak, Quercus laurifolia) y el encino negro (water oak, Quercus nigra) (Figura 14). Estas especies pueden ser un problema en los bosques urbanos ya que los cortes grandes de poda, las heridas en el tronco y el daño en las raíces pueden resultar en cavidades y pudrición interna extensiva.

Para ver una lista http://hort.ifas.ufl.edu/woody/compartmentalization.html

No vale la pena restaurar especies de vida corta.

Cada especie tiene una duración de vida inherente y algunos árboles viven más que otros (Tabla 1). La longevidad debe ser considerada cuando se evalúa si vale la pena restaurar un árbol o si se debe remover. Usualmente los árboles de vida corta, tampoco compartimentan bien y no resisten la pudrición. Tenga en cuenta que el riesgo de la caída se incrementa con la edad (Figura 15).

<table>
<thead>
<tr>
<th>Vida Corta</th>
<th>Vida Media</th>
<th>Vida Larga</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 50 años)</td>
<td>(50 a 100 años)</td>
<td>(> 100 años)</td>
</tr>
<tr>
<td>roble-laurel</td>
<td>tulipán africano</td>
<td>roble perenne</td>
</tr>
<tr>
<td>(Quercus laurifolia)</td>
<td>(Spathodea campanulata)</td>
<td>(Quercus virginiana)</td>
</tr>
<tr>
<td>ciclamor</td>
<td>árbol del paraíso</td>
<td>liquidámbar</td>
</tr>
<tr>
<td>(Cercis canadensis)</td>
<td>(Simarouba glauca)</td>
<td>(Liquidambar styraciflua)</td>
</tr>
<tr>
<td>cepillo de botella</td>
<td>arce rojo</td>
<td>magnolia sureña</td>
</tr>
<tr>
<td>(Calistemon spp.)</td>
<td>(Acer rubrum)</td>
<td>(Magnolia grandiflora)</td>
</tr>
<tr>
<td>orquídea de Hong Kong</td>
<td>almácigo</td>
<td>ciprés</td>
</tr>
<tr>
<td>(Bauhinia blakeana)</td>
<td>(Ilursara simarouba)</td>
<td>(Taxodium distichum)</td>
</tr>
<tr>
<td>jacaranda</td>
<td>uva playera</td>
<td>caoba</td>
</tr>
<tr>
<td>(Jacaranda mimosifolia)</td>
<td>(Coccoloba uvifera)</td>
<td>(Swietenia mahogany)</td>
</tr>
</tbody>
</table>

* Tenga en cuenta que los árboles urbanos son de longevidad corta.*

El mangle botón es un ejemplo de un árbol que compartimenta bien.

El encino negro es un ejemplo de una especie que no compartimenta bien.

El roble-laurel vive cerca de 50 años y empieza a podrirse tan pronto alcanza los 40 años. El roble-laurel en esta fotografía tiene 45 años y ha sido dañado moderadamente a gravemente por el viento. ¿Vale la pena restaurar este árbol o debe ser reemplazado? Probablemente es más efectivo, en cuanto a costos, plantar otra especie en su lugar.
d. La salud del árbol

Los árboles sanos se recuperan mejor después de una tormenta que los árboles enfermos.

La pudrición, una de las causas principales de fallas en los árboles, es causada por hongos que debilitan la madera a medida que van creciendo. Grietas, cicatrices, hinchazones, cancros, tocones y ramas muertas, y heridas grandes antiguas, sugieren pudrición interna y aumentan la probabilidad de la caída del árbol. La pudrición frecuentemente está presente sin signos obvios (Figuras 16 y 17).

Los hongos en la base del tronco de un árbol pueden ser signo de Armillaria u otro hongo que puede causar pudrición de las raíces creando inestabilidad en los árboles (Figura 18). La descomposición de la raíz (Figura 19) puede ser diagnosticada con inspecciones regulares cuidadosas hechas por arboricultores entrenados.

e. Estructura del árbol

Los árboles con buena estructura remanente en su tronco serán más fáciles de restaurar.

Los árboles con un tronco individual hasta la copa, con ramas espaciadas de manera uniforme y de diámetro considerablemente menor que el del tronco, copa balanceada, ausencia de tallos codominantes e inclusiones en la corteza, son signos de un árbol fuerte. Estas características determinan que el árbol sea capaz de resistir las tormentas (Figura 20). Los arboricultores están capacitados para crear y mantener estructuras fuertes mediante técnicas apropiadas de poda, en especial si se empieza desde temprano cuando los árboles están jóvenes.

¿Sabía usted?

La pudrición a menudo se presenta sin signos obvios pero puede ser identificada con cuidadosas inspecciones regulares hechas por un arboricultor.
Las prácticas indebidas de poda ocasionan la caída y ruptura de los árboles

De la remoción de ramas grandes resultan grandes cortes de poda que pueden servir como puntos de entrada para hongos que empiezan el proceso de pudrición (Figura 21). El desmoche es también una práctica incorrecta de poda que debe evitarse. Los rebrotes que crecen de los árboles desmochados están mal conectados a la rama, lo que los hace más susceptibles a quebrarse en las tormentas (Figura 22).

Las prácticas incorrectas de manejo de las raíces afectarán la estabilidad del árbol.

No se puede descuidar la salud y la integridad de las raíces. Además de la absorción del agua y los minerales esenciales, las raíces son el anclaje del árbol. Si las raíces están de alguna manera dañadas, las probabilidades de caída del árbol aumentan (Figura 23). Las actividades de construcción cerca de 6 metros (20 pies) alrededor del tronco de un árbol existente pueden causar la caída del árbol hasta más de una década después.
g. Condiciones del sitio

Los árboles necesitan un espacio adecuado y buenas propiedades del suelo para mantener su estabilidad.

Los árboles con su sistema radicular confinado a espacios con poco suelo no son tan estables como los que se les permite desarrollar su sistema radicular más ampliamente (Figura 24).

Los suelos compactos, mal drenados o con alto nivel freático pueden restringir el crecimiento en profundidad de las raíces, lo cual puede resultar en árboles inestables (Figura 25).

La localización incorrecta y la selección errada de la especie pueden no justificar la restauración de un árbol.

La importancia de la selección correcta del árbol para el sitio adecuado ha sido muy enfatizada. Sin embargo, la selección inapropiada de los árboles es uno de los errores más comúnmente observados. Por ejemplo, El encino blanco (white oak, Quercus alba) en la Figura 26 puede crecer hasta 30 metros (100 pies) con una copa extendida ampliamente y muchas ramas horizontales.

Si el árbol está en el lugar equivocado (como lo sería un árbol grande debajo de líneas eléctricas) o si es una especie inadecuada para la propiedad (con frutos que manchán o ensucian, etc.), lo mejor será removerlo si además representa un daño potencial serio.

h. Valor cultural del árbol

El esfuerzo que se necesite en la restauración de un árbol, estará determinado por el valor que éste tenga para usted o su comunidad.

Además del valor económico y los servicios ecológicos que el árbol suministra a su dueño y a la comunidad, el árbol en cuestión puede tener un valor sentimental, ser un memorial o tener una significancia histórica o un atributo cultural. (Figura 27).
III. Cuándo remover un árbol

En términos generales, éstas son las situaciones en las cuales un árbol requiere ser removido una vez se han manejado las situaciones referentes a la seguridad. Recuerde, la prioridad es remover árboles que representen un peligro a la gente y a las propiedades.

1. Cuando la parte baja del tronco está partida o agrietada

Los árboles con grietas en el tronco y las ramas principales son muy peligrosos, ya que las ramas con este tipo de daño no están bien aseguradas al árbol. Las grietas profundas en el tronco (Figura 28) no cierran y representan un defecto grave que hace que esos árboles sean un gran riesgo en los paisajes y jardines.

2. Si una rama grande se ha desgarrado del tronco

La figura 29 muestra un árbol que necesita ser removido porque su tallo grande codominante se desgarró del tronco principal. Observe el área oscura en la parte superior del desgarre — es una inclusión en la corteza (Figura 29). Las inclusiones en la corteza son uniones débiles entre las ramas y son muy susceptibles a rupturas.

3. Cuando el árbol está inclinado hacia un objetivo

Si un árbol inclinado tiene posibilidad de caer sobre una persona, edificio, línea de servicio público, vía u otro objeto valioso, éste debe ser removido inmediatamente después de la tormenta. Sin embargo, primero que todo se debe revisar si las raíces de los árboles inclinados están quebradas, expuestas o levantándose por fuera del suelo (Figura 30). Preste atención a los árboles inclinados con copas desequilibradas, grietas en el tronco e inclusiones en la corteza.

4. Si la estructura remanente del árbol es muy susceptible a partirse

¡El árbol que se muestra en la Figura 31 debe ser removido! El árbol sufrió un daño estructural grande comprometiendo el resto.
de su estructura. Toda la masa está a un lado del árbol y el tronco está muy débil debido a los dos desgarres. La causa de los dos desgarres fue la inclusión en la corteza.

5. **Si las raíces principales están arrancadas**

Los árboles maduros y de mediana edad que se han caído o están inclinados, usualmente sufren un daño severo en sus raíces. Una vez las raíces se parten, no enraizan de nuevo en el suelo y tienen poca probabilidad de desarrollar el sistema radicular necesario para mantener el árbol derecho (Figura 32). La razón de esto parece ser que las raíces de gran diámetro no se regeneran como las de diámetro pequeño (de 1 pulgada o menos de diámetro). Además, las raíces grandes dañadas se pueden descomponer o podrir causando inestabilidad al árbol (Figura 33).

6. **Cuando las ramas grandes se han quebrado**

Remueva los árboles que tienen la mayoría de la copa dañada debido a la ruptura de ramas grandes (de diámetro mayor de 8 pulgadas) (Figura 34). Aquellos árboles con ramas de diámetro pequeño quebradas tienen mejor futuro y pueden ser restaurados (Figura 35).

7. **Cuando hay raíces estranguladoras causando puntos muertos o grietas en el tronco**

Las raíces circulares alrededor del tronco a menudo son raíces estranguladoras que cuando rodean la mayoría del tronco pueden causar la muerte del árbol. (Figura 36). Los árboles con raíces circulares y grietas en el tronco serán menos estables, por lo tanto deben ser removidos.
IV. Cuándo restaurar un árbol

Muchos árboles pueden ser restaurados a pesar de haber sufrido el golpe de vientos fuertes. Sin embargo, solo restaure los árboles que tengan las ramas principales, el tronco y las raíces intactos (Figuras 37 y 38).

Para ser un buen candidato para restauración, un árbol no debe tener grietas en sus ramas principales o en el tronco, ni pudrición de la madera ni inclusiones en la corteza. Las raíces no deben estar expuestas, por fuera del suelo o alrededor del tronco. Asegúrese de que la estructura del tronco y las ramas estaban bien antes de la tormenta.

Estas son guías generales que explicarán en detalle cuándo un árbol debe someterse a una poda restaurativa.

1. **Cuando el árbol está joven**

Los árboles jóvenes de menos de 10 pulgadas de diámetro como este roble perenne (Figura 39), son buenos candidatos para la restauración porque tienen menos ramas para podar, la copa está más cerca del piso y toleran mejor la remoción de la mayoría de la copa que los árboles viejos.

2. **Si la copa está defoliada**

Usualmente los árboles que pierden sus hojas durante un huracán no están muertos. La mayoría de los árboles regeneran follaje nuevo en las semanas siguientes a la tormenta*. Las investigaciones han mostrado que en algunas especies como el almácigo (gumbo limbo, Bursera simarouba) y el roble perenne (Figura 40), la defoliación es por lo regular una estrategia de supervivencia ya que esto reduce la resistencia al viento. Los árboles defoliados sin muchas ramas quebradas, que estaban sanos antes de la tormenta, no requieren de un tratamiento especial. Espere. El tiempo es el mejor tratamiento para este tipo de daño. No hay necesidad de aplicar fertilizantes u otros químicos.

Los árboles y las palmas que fueron inundados con agua salada a menudo pierden su follaje debido a daño en sus raíces. Es estos casos, el árbol necesita ser regado para lavar la sal del suelo.

Eventualmente muchos rebrotes emergen en árboles dañados por un huracán. Algunos árboles esperan para producir nuevo follaje hasta la

*Nota: Algunas especies, como los pinos, pueden no recuperar su follaje después de un huracán. Vea Pinos (página 16) para mayor información.
capítulo Evaluación de los Árboles Después de Un Huracán Y Toma de Decisiones p. 13

primavera siguiente. A los rebrotes se les debe permitir crecer porque ellos proveen al árbol de la energía que necesitará para recuperarse (Figura 41). Estos pueden ser podados después.

| PARA MAYOR INFORMACIÓN | EN MANEJO DE REBROTES | Restauración de árboles después de un huracán. |

3. Si las ramas pequeñas están quebradas o muertas

Los árboles con ramas pequeñas quebradas o muertas (de menos de 4 pulgadas) pueden ser fácilmente podados de la copa con buena posibilidad de recuperarse. Las ramas pequeñas tienen un mejor chance de recuperarse que las de diámetros grandes (8 pulgadas o más). Si tallos codominantes pequeños están quebrados en lo alto de la copa sin daño en el tronco principal, el árbol también puede ser restaurado (Figura 42).

4. Si la mayor parte de la copa está dañada y el árbol es de una especie resistente a la pudrición.

Los árboles de especies resistentes a la pudrición pueden perder mucho del follaje de su copa y todavía recuperarse después de una tormenta. Aun con ¾ de sus ramas pequeñas quebradas (menores de 4 pulgadas) o partidas por un huracán, muchos de los árboles resistentes a la pudrición pueden ser restaurados (Figura 43).

5. Algunas de las ramas principales están quebradas y el árbol es de una especie resistente a la pudrición.

Muchas especies que resisten la pudrición después de que han sido dañadas, pueden ser restauradas, aun con algunas de sus ramas grandes quebradas (Figura 44).

Manejar los rebrotes con el tiempo puede crear un árbol con una estructura razonablemente buena y una copa que se vea bonita. El manejo de los rebrotes debe ser hecho por arboricultores profesionales.

Para remover una rama pequeña, corte en la base del desgarre o remueva la rama dañada entera si no es el tronco principal.

La caoba puede ser restaurada aun con algunas de sus ramas grandes quebradas.

Este árbol de una especie resistente a la pudrición puede restaurarse aunque perdió la mayoría del follaje de la copa.
Los árboles que tienen un diámetro de tronco menor de 4 pulgadas deben ser levantados lo más pronto posible para prevenir que las raíces se mueran (Figura 45). Esos árboles pequeños tienen un mejor chance de desarrollar una estructura de raíces apropiada para mantener el árbol firme en el suelo que los árboles más grandes.

Los árboles de cualquier tamaño, que fueron plantados recientemente pueden ser resembrados porque por lo regular no tienen raíces grandes dañadas (Figura 46). Estos árboles deben ser tratados como si fueran recién plantados y tutorados con la ayuda de un profesional.

Table 2. Guía para el levantamiento de árboles basada en el diámetro del tronco

<table>
<thead>
<tr>
<th>Diámetro del tronco</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor de 4 pulgadas</td>
<td>Levante y ponga estacas</td>
</tr>
<tr>
<td>De 4 a 8 pulgadas</td>
<td>Puede levantar y poner estacas Podría ser un riesgo más tarde</td>
</tr>
<tr>
<td>Más de 8 pulgadas</td>
<td>No se recomienda Es un riesgo potencial</td>
</tr>
</tbody>
</table>

Los árboles recién plantados como este arce rojo, deben ser tratados como recién plantados poniéndoles estacas y regandoles apropiadamente.

Los arboricultores con experiencia en levantar árboles después de tormentas han encontrado que los mayores de 4 pulgadas de diámetro de tronco son más susceptibles a caer nuevamente después de otras tormentas que los árboles más pequeños. La razón de ésto parece ser que en comparación con las raíces más pequeñas (de una pulgada o menos de diámetro) las raíces grandes que han sido gravemente dañadas no se regeneran. Además, las raíces grandes dañadas se pudren y quiebran más fácilmente.

La tabla 2 muestra una guía básica general basada en las observaciones de arboricultores y otros profesionales del cuidado de los árboles. Tenga en cuenta sin embargo, que no hay todavía investigaciones publicadas o respuestas definitivas en este tema.
Asegúrese de que no haya raíces circulares en árboles pequeños caídos o inclinados

Antes de decidir resembrar árboles pequeños que estén caídos o inclinados mire si hay raíces circulares. Algunas de las raíces circulares pueden ser removidas y los árboles responderán con mayor vigor (Figura 47). Otros árboles tendrán que ser removidos (Figura 48). Si las raíces circulares rodean la mayoría del tronco, el árbol no es restaurable porque las raíces estranguladoras impiden la fotosíntesis, el crecimiento de otras raíces y el movimiento de agua.

Recuerde:
¡Si remueve un árbol, plante otro en su lugar!

Figura 47
Este árbol puede restaurarse ya que solo tiene una raíz circular alrededor del tronco. Antes de levantar un árbol así, corte cualquier raíz circular en el punto donde ésta comienza a rodear el tronco, como se indica en la línea punteada. Esto permitirá el crecimiento de raíces nuevas hacia afuera del tronco incrementando la posibilidad de que el árbol recobre el apoyo.

Figura 48
Este árbol debe ser removido. Mucho de su sistema radicular proviene de raíces circulares que están rodeando completamente el tronco y hacen que ningún tratamiento sea práctico.
V. Evaluación de pinos

Los pinos son muy susceptibles al daño de los vientos. Pueden partirse, desenterrarse o inclinarse durante las tormentas. Un pino que todavía permanece de pie después de un huracán puede sufrir algún daño interno que no sea visible en ese momento. Antes de decidir si remover o restaurar, espere y mire si el árbol está vivo considerando los siguientes puntos:

• A menudo los pinos mueren en un período de 6 meses a 2 años después de una tormenta.
• Algunos pueden permanecer verdes hasta por más de un año, luego de repente sus acículas se ponen amarillas (Figura 49) y progresivamente, en poco tiempo se vuelven marrón.
• Los pinos con todas las acículas marrón están muertos y deben ser removidos.
• Busque cuidadosamente si hay presencia de insectos. Los pinos débiles pueden ser más susceptibles a las plagas de insectos y a las enfermedades.

¿Qué causa el amarillamiento y la muerte de los pinos?

Las causas aún no se entienden por completo, pero es probablemente debido al daño interno producido por el doblamiento y el retorcimiento del tronco por la fuerza de los vientos huracanados. Los vientos prolongados también pueden producir la ruptura de raíces pequeñas, sin que se dañen las raíces grandes de soporte. Las ramas y las raíces dañadas son incapaces de suplir el agua y los nutrientes necesarios a la copa, lo que resulta en amarillamiento de las acículas y el decaimiento del pino.

VI. Evaluación de palmas

Las palmas crecen de manera diferente a los demás árboles. El punto de crecimiento de una palma está localizado en la punta de cada tronco, rodeado por hojas (llamadas frondas). Todas las frondas se originan en este punto (llamado “yema”). Si la yema se ha dañado severamente o está muerta, las nuevas hojas no se desarrollarán y si la palma tiene un solo tronco, ésta morirá (Figura 50). En palmas con varios troncos, los troncos que no se han dañado se pueden recuperar siempre y cuando las yemas no estén dañadas. Si el tronco de una palma está partido por la mitad, la palma está muerta. Sin embargo, en las palmas que permanecen de pie, la yema no siempre es accesible o visible, lo que hace difícil determinar si está o no dañada. Para estas palmas siga las siguientes recomendaciones:

• Dé al menos 6 meses a la palma para volver a crecer. Las hojas nuevas pueden estar atrofiadas, descoloridas o de forma irregular.
• Para tener de nuevo una palma normal con la copa llena de frondas, se puede tomar de 1-2 años.
• Riegue 3 veces semanalmente por 6 semanas si no hay suficiente lluvia; riegue más a menudo si la sequía persiste.

Figura 49
Seis meses después de un huracán, este pino de repente se volvió amarillo y puede ser que muera.

Figura 50
Estas palmas reales (royal palm, Roystonea elata) en círculos en la parte posterior de la fotografía están muertas, ya que sus yemas están destruidas. Las palmas en el frente, sin embargo, pueden ser restauradas con sólo permitirles continuar con su crecimiento.

PARA MAYOR INFORMACIÓN »
SOBRE CÓMO LEVANTAR, TUTORAR Y REGAR ÁRBOLES CAÍDOS
CAP: Restauración de árboles después de un huracán
Consideraciones finales

Inmediatamente después de un huracán es importante separar los árboles en grupos por prioridades, actuando rápido en situaciones que requieren atención urgente y seleccionando los árboles que se monitorearán y tratarán más tarde. Recuerde que aunque los huracanes pueden ser devastadores para las comunidades y el bosque urbano, no todos los árboles dañados por tormentas necesitan ser removidos y muchos de ellos pueden ser salvados y tratados.

Cuándo evalúe el daño piense acerca de la función de los árboles y sus objetivos. Las acciones de manejo para decidir si un árbol debe ser removido o restaurado, dependerán de las observaciones hechas basadas en los puntos expuestos a continuación:

- Espacio y propiedades del suelo
- Salud, tamaño y edad del árbol
- Prácticas culturales previas
- Estructura del árbol previa
- Magnitud del daño

Siga siempre los procedimientos de seguridad. La limpieza después de un huracán es extremadamente peligrosa, aun para los profesionales. Contrate un arborícola certificado para ayudar con la recuperación después del huracán y para implementar un programa de poda restaurativa.

La recuperación después de una tormenta no es un proceso rápido, por lo tanto tenga paciencia con sus palmas.

Lecturas sugeridas

Fuentes adicionales

Trees and Hurricanes
http://treesandhurricanes.ifas.ufl.edu/

International Society of Arboriculture (ISA)
http://www.isa-arbor.com/

Florida AgSafe
http://www.flagsafe.ufl.edu/

Urban Forestry South Expo
http://www.urbanforetrysouth.org/

USDA Center for Urban Forest Research
http://www.fs.fed.us/psw/programs/cufr/
Broken tree limbs in or near electrical wires need to be reported to the utility company as soon as possible. Only trained utility line clearance crews should attempt to do such work.

For all other damaged trees, get input from a certified arborist before deciding what to do.

Remove broken, cracked limbs and those that are dangling in the canopy, waiting to fall.

Uprooted palms and trees should be reset only after they have been examined for safety and deemed healthy enough for replanting.

Only hire tree-care professionals who can provide proof of licensing and insurance.

For more information, visit http://edis.ifas.ufl.edu/topic_tree_care
ÁRBOLES DAÑADOS POR EL HURACÁN

- Ramas de árboles quebrados en o cerca de cables eléctricos necesitan ser reportados a las empresas de servicio público lo más pronto posible. Solo los equipos de servicio público calificados deben de intentar este tipo de trabajo.

- Para todos los otros árboles dañados, consulta a un arborista acreditado antes de tomar una decisión.

- Quiten las ramas quebradas y todos aquellos que están colgando del árbol ya para caerse.

- Todas la palmas y árboles arrancados deben de ser examinados para ver si son seguros y saludables antes de ser replantados.

- Solo contraten arbolistas profesionales quienes puedan mostrar prueba de licencia y seguro.

Para más información, visite http://edis.ifas.ufl.edu/topic_tree_care
CHAPTER

4

RESTORING TREES AFTER A HURRICANE

Introduction

The step-by-step outline provided in this document summarizes the process for restoring trees so that they will bring shade and beauty back to the community with reduced risk. Restoration typically requires more than one pruning to develop strong tree structure, so remember that patience is a virtue when dealing with storm-damaged trees.

Various factors determine the period of time necessary for recovery: age and health of tree, size, species, and extent of damage. These factors are interrelated, and together determine the amount of care a tree will need after a storm. A restoration pruning program typically lasts from two to five years and perhaps much longer for large and severely damaged mature trees.

Know what trees can be restored. The structure of the tree should be intact, without any visible cracks or large wounds on the main trunk, limbs, or main roots. Trees can recover from complete leaf loss or significant damage to the canopy, including several broken limbs, but major trunk damage is often irreparable.

Contents

<table>
<thead>
<tr>
<th></th>
<th>Response Plan for Immediately after a Storm</th>
<th>p. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Allow Time for Recovery</td>
<td>p. 6</td>
</tr>
<tr>
<td>III</td>
<td>Restoration Pruning Program</td>
<td>p. 6</td>
</tr>
<tr>
<td>IV</td>
<td>Restoration of Palms</td>
<td>p. 8</td>
</tr>
<tr>
<td>V</td>
<td>Start a Tree Management Program</td>
<td>p. 10</td>
</tr>
</tbody>
</table>

The Urban Forest Hurricane Recovery Program http://treesandhurricanes.ifas.ufl.edu
I. Response Plan for Immediately after a Storm

After a storm, removing hazards and cleaning tree canopies of broken limbs and dead stubs should be the focus of treatment. Major pruning to alter the tree’s structure should not be done at this time. Trees use energy stored in the wood to recover from damage and produce new growth; therefore, during the clean up process, the least amount of live wood possible should be removed. (Think of the stored energy in trees as the limited funds in a bank account. After paying for repairs on the house due to hurricane damage, homeowners usually do not rush out to buy a new sailboat. Similarly, this is not the time to further reduce the already limited “funds” of the tree by removing live wood.)

Be very careful not to cause additional stress to the tree by injuring trunk, branches, or roots. Do not top your trees or cut the entire canopy back to stubs (Figure 1). Many communities in Florida outlaw or discourage topping because it leads to decay and reduces its vigor.

Step 1

Get help with removing potential hazards.

If a limb has fallen near power lines, make sure that a qualified line-clearance arborist treats the situation. Working near electricity is highly dangerous, and may result in a fatality for workers who do not follow proper safety procedures. Other hazardous situations include large hanging limbs or leaning trees that could fall on a person, hit a house, or damage other potential targets if they go down. These situations should be taken care of by a professional before anything else.

Step 2

Stand up and stake small fallen trees, and provide irrigation as needed for stressed trees.

Standing up small fallen trees is a priority because the roots dry out quickly. Experienced professionals have observed from past hurricanes that staked trees with a trunk diameter greater than about 4 inches tend to blow down again in later storms, and may not be worth the time and expense for restaking. The reason for this appears to be that severed roots on bigger trees do not regenerate new roots as well as small (one inch diameter or less) roots do. Also, large severed roots can decay or rot, making the tree unstable. The exception is recently planted trees, which can be restaked at any size because they do not have large broken roots. These trees should be treated as new plantings and staked with the help of a professional.

Staking methods

Research and experience on the effectiveness of different staking methods show that some systems work better than others. Root ball anchorage systems work very well to stabilize trees in the soil (Figure 2). Rigid systems can work, but they need to be adjusted or removed within six months (Figure 3).
Steps for standing up trees that have fallen

1. Keep roots moist.
2. Excavate a hole to accommodate roots.
3. Use sharp tools to make clean cuts on jagged or torn roots.
4. Pull the tree up as straight as possible, taking care to not damage the trunk or roots.
5. Fill the hole with soil from the site, but avoid burying the area where the trunk meets the top main root (Figure 4).
6. Irrigate the tree with the same frequency as for newly planted trees, approximately three times/week for the first several months. Also, apply water during dry periods. Do not fertilize for one year.
7. Install staking system. Remove or adjust stakes after six months to one year.

Irrigation for stressed trees

Root growth is necessary for tree recovery after the storm, and keeping the soil moist will encourage formation of new roots. During the dry period of October through mid-May in Florida, trees should be irrigated as needed to help them recover from storm damage. When irrigating staked trees, two to three gallons per inch of trunk diameter should be sufficient. Efficient irrigation systems apply water directly to the root ball, rather than spraying overhead. Irrigation is not needed if the root ball is already saturated or wet from heavy rains.

Significant tree dieback due to salt damage can occur in coastal areas that receive storm surge from hurricanes. These trees may require irrigation treatments to remove salts from the soil by flushing with water.

Step 3

Clean tree canopies.

The purpose of canopy cleaning is to remove potential hazards like dead and cracked branches and broken limbs. Canopy cleaning also includes making smooth pruning cuts behind broken branch stubs to allow the proper development of new tissue to close over wounds (Figure 5). Remember that stressed trees need to access energy stored in their limbs in order to recover. The stored food is necessary for the tree to sprout, produce new leaves, and defend itself against organisms that cause decay. It is better to leave the tree looking unbalanced and misshapen than to remove large portions of the live canopy at this time. Shaping can be done later as part of the restoration process.
Removal cut

A removal cut removes a branch back to the trunk or parent branch (Figures 6 and 7). After a hurricane, this type of cut is used to remove broken, cracked, and hanging limbs. Hanging and detached limbs should be removed first so that branches do not fall and cause injury. Be sure there are no cracks along the large, main branches; use binoculars to get a closer look if needed. Arborists can climb trees to check for cracks and other structural defects. A branch with a crack can be a hazard, and should be removed if there is a target nearby.

Figure 6
Drawing of a removal cut. After a hurricane, removal cuts are used to remove broken, cracked, and hanging limbs back to parent stems.

Figure 7
Photograph of a removal cut. Branch is pruned back to the trunk, leaving the branch collar intact. A good pruning cut is round. Cuts that are too close to the trunk are oval-shaped.

Reduction cut

A reduction cut shortens the length of a stem by pruning back to a smaller limb, called a lateral branch (Figures 8 and 9). Ideally, the lateral should be at least 1/3 the diameter of the stem being cut. This type of cut is used for making clean cuts behind jagged tips of broken branches.

Figure 8
Drawing of a reduction cut. This type of cut is used for making clean cuts behind jagged tips of broken stems and branches.

Figure 9
Photograph of a reduction cut. Branch is correctly pruned back to a lateral that is at least 1/3 the diameter of the broken stem.
Heading cut
A heading cut is made at a node along the stem and leaves a stub (Figures 10 and 11). A node is the bud area from which branches arise, sometimes visible as a line around a stem or a slight swelling. When there is not a live lateral branch present for making a reduction cut, a heading cut could be a better choice than removing a large limb back to the trunk during canopy cleaning. Removal of large limbs can take away too much live wood, causing decay and disrupting canopy balance. This can result in poor health or tree failure in the years to come.

Heading cuts are allowed in the American National Standards Institute’s national pruning standard [1] as part of restoration pruning. A heading cut used to clean the canopy could look like topping, which is a harmful method of pruning trees, but the practice is dramatically different. Topping severely reduces the entire canopy of a tree (Figure 10, top), whereas heading cuts used in restoration are made only when necessary. Otherwise, heading cuts should not be used as a standard practice on healthy, undamaged trees.

Summary of Actions after a Storm
Contact the power company if a tree is down near power lines.

Determine whether the tree is personal or municipal property to avoid unnecessary expenses.

Protect roots of fallen trees from drying out by watering them and covering them with a tarp, not clear plastic.

Hire a professional to help with staking fallen trees to avoid causing trunk damage.

Before pruning, assess damage and make sure the tree is restorable.

Hire an ISA-certified arborist for restoration pruning. Be familiar with the steps of restoration so that you know what to expect.

Look up! Use binoculars to check for broken branches in the upper canopy, and look for cracks along limbs.

Broken, hanging limbs are removed first.
Jagged tips of broken branches should be removed with a smooth pruning cut.

Unless limbs are cracked and pose a hazard, excessive amounts of live wood should not be removed.

Reduction cuts are preferable on broken limbs, but if there is not a lateral to reduce back to, heading cuts are sometimes appropriate.
II. Allow Time for Recovery

Wind damage from hurricanes often strips the leaves from a tree. This interrupts the tree’s ability to photosynthesize and store energy. In response to the damage, the tree sends out epicormic shoots, typically referred to as sprouts, found mostly along the top and at the tips of branches. To produce the sprouts, the tree uses energy (starch) stored in the living wood, which temporarily weakens the tree. Allowing sprouts to grow will rebuild the starch reserves and other energy-storing compounds, increasing strength of the tree over time.

Factors Affecting Recovery

Several factors determine the recovery period needed before initiating restoration pruning.

Tree Age

This is an important factor—young trees have a higher ratio of live to dead wood, which allows a faster recovery. This means you can begin restoring young trees sooner after the storm, within one to two years. Older trees may need two years or longer for sprouts to grow before you remove live branches.

Tree Size

Small maturing trees (less than 30 feet tall at maturity) take fewer pruning visits because structural defects are not as critical. A falling crapemyrtle limb will not inflict as much damage as a falling live oak limb, for example. Large trees take priority during hurricane recovery. However, small trees still need time to recover properly. Trying to prune too much live wood at one visit will be just as problematic for the health of a small tree as it would be for a large one.

Tree Species

Knowing the species of a tree is particularly important in forming a pruning plan. Some species are short-lived because they are prone to decay. Therefore, it may be more efficient to focus restoration efforts on trees that resist decay and are more likely to live longer. Common examples in Florida are live oak and buttonwood, which resist decay and recover from damage much better than laurel oaks, which often have severe internal decay.

Tree Health

Health of the tree prior to the hurricane will affect its ability to recover. Healthy trees recover faster than those in poor health. Old trees with decayed root systems, stem decay, and large dead branches are more likely to decline or die than recover. These preexisting conditions might make it more appropriate to remove the tree instead of restoring it.

Extent of Damage

The extent of damage to the tree will also determine the length of time to wait before pruning live branches. The more damage to the tree, the longer you should wait before pruning. Severely damaged trees should be monitored to determine whether they are recovering or declining. Recovering trees will sprout aggressively, while declining trees have fewer, slow-growing sprouts and few leaves.

III. Restoration Pruning

Program: Sprout management

Once a tree has been determined to be worth restoring, its canopy cleaned, and the appropriate length of time has passed for recovery, it is time to begin sprout management. Sprout management is the training of sprouts so that they will grow into strong branches and build structure back into the tree.
First pruning visit

Two or more years after storm

Dead portions of branches that did not sprout and any other dead branches and stubs in the canopy should first be removed. Sprouts on recovering trees grow aggressively, and competition for light and space can lead to long, weak sprouts. Therefore, the goal for the first pruning visit is reduce some sprouts, remove some, and leave some (Figures 12 and 13). The most vigorous sprouts often develop side branches, and these are the ones that should be left. Leave all lower side branches on developing sprouts that will remain in order to encourage strength. Remove sprouts located near the selected sprouts to allow space for growth. Ideally, the selected sprouts should be spaced approximately 12 inches or more apart. Some sprouts should be reduced rather than removed because they will continue to build energy reserves and increase the strength of the damaged branch. The reduced sprouts will be removed at a later pruning visit, or they may be shaded out and die naturally.

Keep in mind that if the first visit is several years after the storm, there may be touching and crossing sprouts. Restoration pruning should remove or reduce these sprouts to ensure none are touching. Space them apart so each develops properly.

Second and third pruning visits

Allow about a year between pruning visits. The objective for the second and third visits is to continue sprout management, keeping the most vigorous sprouts to be the new branches, and reducing or removing competing sprouts. Large and severely damaged trees may need more pruning visits, while young or moderately damaged trees may only need a second visit to complete sprout management. Again, patience is important in this process. If sprouts are removed too soon and enough time is not allowed for building starch back into the wood, the tree will resprout, causing a decline in health. If pruning cuts made during the canopy-cleaning process left stubs that are sprouting poorly, consider removing these. Also, remove any dead branches at this time.
The goal of sprout management is for a sprout to become the new branch leader and close over the pruning cut at the branch tip. Large (4 or more inches in diameter) branches are less likely to close over than smaller branches. A new branch leader can be established within a year or two when the diameter of the broken tip is 1–2 inches (Figure 14). For larger branches, it could take many years for a sprout to grow over the pruning cut, with more visits needed for reducing and removing sprouts.

Later pruning visits

Four or more years after storm

Once the canopy has been pruned several times and new leaders and branches have been reestablished on broken branches, it is time for structural pruning. The priority of structural pruning is to reduce limbs that are larger than half the diameter of the main trunk. Trees fail in storms at areas in the canopy where there are structural weaknesses like codominant stems, bark inclusions, and unbalanced and overextended canopies.

IV. Restoration of Palms

As with hardwood trees, the priority when restoring palms is to eliminate hazards and minimize removal of live tissue. Irrigation two to three times per week can also help palms recover if rainfall is lacking.

Step 1

Remove dead fronds that could fall and hit a target.

As with canopy cleaning on trees, the priority when cleaning palms is to remove potential hazards. The palm in the foreground of Figure 15 has brown, hanging fronds that should be removed. However, not all hanging fronds need to be pruned (see Step 3).
Step 2

Remove fronds that are smothering the bud.

When broken fronds cross over the top of the palm, they may suppress new growth from the bud (Figure 16). These fronds should be removed.

Step 3

Leave bent green fronds attached to palm until new fronds emerge.

Fronds become bent and will droop down along the trunk in a hurricane. Many of these remain green and are still well connected to the palm (Figure 17). These fronds should be kept until new foliage fully emerges because they photosynthesize and help the palm regain energy reserves and aid recovery.

Step 4

Leave fronds that are yellowing or have brown tips.

Establish a fertilization program to correct nutrient deficiencies, but wait until palms begin growing new leaves before applying fertilizer. This may mean waiting up to six months after storm damage. The palm pictured in Figure 18 is showing severe yellowing or chlorosis on the lower fronds because it lacks nutrients like potassium and magnesium. Yellowing or browning fronds still provide energy for growth, and removing too much of this foliage reduces the palm’s vigor, possibly even killing it.

Avoid overpruning palms.

The two most common mistakes made with palms are using the wrong fertilizer and overpruning (Figure 19). In fact, using the wrong fertilizer often leads to overpruning because...
typical palm maintenance (though potentially harmful) removes all leaves that are yellowing or have brown tips. Arborists report that overpruned palms suffered more damage in hurricanes than palms that were not pruned. This points to the importance of pruning appropriately. Removing too many fronds exposes the delicate bud to more wind and more potential damage. Remember, palms need older fronds to protect the bud and provide nutrients for growth.

V. Start a Tree Management Program

With a team of professionally trained commercial and municipal arborists who provide routine tree maintenance, including appropriate pruning, communities recover much faster after a hurricane. The continued growth of the profession is encouraging, as more communities recognize the need for allocating resources for the care of trees.

Bibliography

Additional Resources

Trees and Hurricanes
http://treesandhurricanes.ifas.ufl.edu/
American National Standards Institute (ANSI)
http://www.ansi.org/
Introducción

La guía detallada que se suministra en este documento resume el proceso de restauración de los árboles de tal manera que puedan brindar de nuevo sombra y belleza a la comunidad, con menos riesgo. Generalmente la restauración requiere más de una poda para desarrollar una estructura fuerte en el árbol, por eso recuerde que la paciencia es una virtud especialmente cuando se trata de árboles muy dañados después de una tormenta.

Varios factores determinan el período de tiempo necesario para la recuperación: la edad y el estado de salud, el tamaño, la especie y la magnitud del daño. Estos factores están relacionados entre sí y juntos determinan el cuidado que un árbol necesita después de una tormenta. Un programa de poda restaurativa generalmente toma de dos a cinco años y algunas veces mucho más tiempo para los árboles adultos con daños graves.

Reconozca los árboles que pueden ser restaurados. La estructura del árbol debe estar intacta, sin heridas visibles o cicatrices grandes en el tronco principal, las ramas o las raíces principales. Los árboles se pueden recuperar cuando han perdido todas sus hojas o han sufrido un daño significativo en sus copas, incluyendo varias ramas quebradas, pero el daño al tronco principal es frecuentemente irreparable.
I. Plan de respuesta inmediata después de una tormenta

Después de una tormenta, el tratamiento debe empezar con la eliminación de peligros para las personas y propiedades, y la limpieza de la copa de los árboles mediante la remoción de las ramas partidas o muertas. En ese momento no se debe hacer una gran poda que altere la estructura del árbol. Los árboles usan la energía almacenada en la madera para recuperarse del daño y producir nuevo crecimiento, es por esto que durante el proceso de limpieza solo se debe remover la menor cantidad posible de madera viva. (Compare la energía almacenada en los árboles con los ahorros limitados de una cuenta bancaria). Después de pagar para reparar los daños hechos por el huracán en la casa, los propietarios usualmente no se apresurarán a comprarse un bote nuevo. De la misma manera éste no es el momento de reducir los recursos limitados del árbol, removiendo madera en buen estado.

Tenga mucho cuidado de no causar estrés adicional al árbol haciendo daño en el tronco, las ramas o las raíces. No desmoche sus árboles ni les corte toda la copa dejando solo muñones. (Figura 1). Muchas comunidades en la Florida prohíben el desmoche por que éste puede producir pudrición y reducir el vigor de los árboles.

Paso 1

Consiga ayuda en la remoción de peligros potenciales.

Si una rama ha caído cerca de las líneas eléctricas, asegúrese de que un arboricultor calificado en limpieza de éstas, se encargue de la situación. Trabajar cerca de líneas eléctricas es muy peligroso y puede ser mortal para aquellos que no sigan los procedimientos con seguridad. Otras situaciones peligrosas incluyen aquellas en las cuales hay ramas grandes partidas colgando o árboles inclinados que pueden caer en cualquier momento sobre una persona, golpear una casa o dañar otro objetivo. Estas situaciones, antes que todo deben ser manejadas por un profesional.

Paso 2

Levante y póngales estacas a los árboles pequeños que se han caídos y suminístreles riego según sea necesario.

Enderezar los árboles pequeños caídos es una prioridad porque las raíces se secan rápidamente. Profesionales con experiencia en los huracanes pasados han observado que los árboles con troncos de diámetro mayor de 4 pulgadas que han sido enderezados, tienden a caer otra vez en tormentas posteriores. Por lo tanto no vale la pena invertir tiempo y dinero en levantarlos. La razón de ésto parece ser que las raíces partidas en los árboles grandes no se regeneran tan bien como en los árboles pequeños (de 1 pulgada o menos de diámetro). También las raíces partidas del árbol pueden podrirse o causar pudrición al árbol haciéndolo inestable. La excepción son los árboles recién plantados de cualquier tamaño, a los cuales se les puede poner estacas por que no tienen raíces grandes partidas. Se debe conseguir la ayuda de un profesional para enderezar, poner estacas y tratar estos árboles como si fueran recién plantados.

Figura 1

El desmoche perjudica la salud del árbol.

Figura 2

Los sistemas de anclaje del cepellón trabajan muy bien.

Figura 3

Los sistemas de estacado rígidos pueden causar un daño significativo al tronco. Este sistema es menos problemático en palmas por que su tronco se expande mucho menos a la altura donde se aseguran las estacas.
Métodos para poner estacas

La investigación y la experiencia han mostrado que algunos métodos para estacar son más efectivos que otros. Los sistemas de anclaje del cepellón trabajan muy bien en la estabilización del árbol en el suelo (Figura 2). Los sistemas rígidos pueden trabajar pero necesitan ser ajustados o removidos a los seis meses (Figura 3).

Pasos para levantar un árbol caído

1. Mantenga las raíces húmedas.
2. Excave un hueco para acomodar el cepellón.
3. Use herramientas afiladas para hacer cortes precisos en las raíces rotas o desgarradas.
4. Levante el árbol hacia arriba lo más derecho posible, tomando medidas para proteger al tronco y las raíces.
5. Llene el hoyo con suelo del sitio, evitando enterrar la raíz principal más superficial (Figura 4).
6. Riegue el árbol con la misma frecuencia que a un árbol recién plantado, aproximadamente tres veces por semana en los primeros meses. Aplique riego también durante los meses secos. No fertilice por un año.
7. Instale un sistema de estacado. Remueva o ajuste las estacas entre los seis meses y el año.

Riego para árboles estresados

Mantener el suelo húmedo promueve la formación de las raíces nuevas, lo cual es necesario para la recuperación de un árbol después de una tormenta.

Durante el período seco de octubre a mediados de mayo en la Florida, los árboles se deben regar tanto como sea necesario para ayudarlos a recuperarse del daño. Cuando se riegan árboles que han sido levantados y tienen estacas, dos a tres galones, por pulgada del diámetro del tronco, deben ser suficientes. Los sistemas de riego eficientes aplican el agua directamente al cepellón de las raíces, en vez de regar el árbol por encima. El riego no es necesario si el cepellón está saturado o ha sido húmedecido por lluvias fuertes. La muerte regresiva (dieback) debida al daño por la sal puede ocurrir en las áreas costeras inundadas con agua durante los huracanes. Estos árboles pueden requerir tratamientos de riego para remover la sal del suelo mediante el lavado con agua.

Paso 3

Limpieza de la copa de un árbol.

El propósito de la limpieza de la copa es remover el peligro potencial, que presentan las ramas grandes muertas y tallos quebrados. También en la limpieza se hacen cortes de poda precisos en los tocones de las ramas quebradas, que permitan al nuevo crecimiento cerrar las heridas (Figura 5). Recuerde que los árboles estresados necesitan recurrir a la energía almacenada en sus tejidos para recuperarse. El alimento almacenado en los tallos es necesario para que el árbol rebrote, produzca nuevas hojas y se defienda de organismos que producen

![Figura 4](image-url)

Dibujo con la técnica correcta de siembra de un árbol.

![Figura 5](image-url)

Limpieza de la copa de un árbol dañado por una tormenta. Las líneas indican donde hacer los cortes de poda.
la pudrición. Es mejor dejar que la copa del árbol se vea sin balance y de forma irregular a remover grandes partes vivas en este momento. Más tarde se le puede dar forma a la copa, como parte del proceso de restauración.

Corte de remoción

El corte de remoción remueve la rama hasta el tronco principal o hasta una rama mayor. (Figuras 6 y 7). Después de un huracán, este tipo de corte es usado para remover ramas grandes que están partidas, agrietadas o colgando del árbol. Remueva primero las ramas que cueilan para que no caigan y causen daño. Asegúrese de que no haya grietas en las ramas grandes principales; use binóculos cuando sea necesario, para ver con más detalle. Los arboricultores pueden trepar los árboles para ver si hay grietas y otros defectos estructurales. Las ramas partidas deben ser removidas por que pueden ser un peligro si hay otros objetos cerca.

Corte de reducción

En el corte de reducción se poda la rama principal hacia una más pequeña llamada rama lateral (Figuras 8 y 9). Idealmente, la rama lateral debe ser al menos...
1/3 del diámetro de la rama que se está podando. Este tipo de corte se usa para cortar las puntas que quedan desgarradas después de que las ramas se han quebrado.

Descopado

El descopado es hecho en un nudo a lo largo de la rama dejando un muñón (Figuras 10 y 11). Un nudo es el área donde rebrotan las hojas; algunas veces es una línea visible alrededor de la rama o una leve protuberancia. Cuando durante la limpieza de la copa no hay ramas laterales cercanas para hacer un corte de reducción, el descopado puede ser una mejor opción antes de remover una rama grande hasta el tronco principal. Con la remoción de las ramas grandes se elimina demasiado tejido vivo causando pudrición y alterando el balance de la copa. Ésto puede menguar la salud del árbol en los años venideros y provocar defectos posteriores.

El descopado es permitido por el Instituto Nacional Americano de Estándares (American National Standards Institute) como parte de la poda restaurativa [1]. El descopado usado en la limpieza de la copa puede tener una apariencia como la del desmoche, el cual es un método de poda muy dañino para el árbol, pero en la práctica es realmente diferente. En el desmoche severo se reduce la copa entera de un árbol (Figura 10, arriba), mientras que el descopado es usado en la restauración y se hace solamente donde sea necesario. Por otra parte,

Resumen del qué hacer después de la tormenta

Contacte a la compañía de electricidad si un árbol ha caído cerca a los cables de eléctricos.

Determine si el árbol es de propiedad privada o pública para evitar gastos innecesarios.

Proteja las raíces de los árboles caídos para que no se sequen, riéguelos y cúbralos con una lona, no con plástico de color claro.

Contrate un profesional para que le ayude con el estacado de los árboles caídos y evitar que se dañe el tronco.

Antes de podar, evalúe el daño y asegúrese de que su árbol se puede restaurar.

Contrate un arboricultor certificado por ISA (Sociedad Internacional de Arboricultura) para la poda restaurativa. Familiarícese con los pasos de la restauración para que sepa que esperar.

¡Observe! Use binoculares para ver las ramas quebradas en la parte alta de la copa y busque heridas o roturas a lo largo de las ramas.

Las ramas partidas que estén colgando se remueven primero.

Las puntas de las ramas partidas que están desgarradas se deben remover con cortes de poda apropiados.

No se debe remover mucho tejido vivo a no ser que las ramas estén partidas y representen un peligro.

Los cortes de reducción son preferibles en las ramas quebradas, pero si no hay ramas laterales hacia las cuales hacer el corte; en algunos casos, el descopado es apropiado.
II. Dele tiempo a la recuperación

El viento de los huracanes frecuentemente deja sin hojas a los árboles. Esto interrumpe su capacidad de fotosintetizar y almacenar energía. Como respuesta al daño, el árbol normalmente desarrolla rebrotes a lo largo y en la punta de las ramas. Para producir los rebrotes, el árbol usa energía (almidón) almacenada en la madera viva, debilitándolo temporalmente. Si se permite que los rebrotes crezcan, las reservas de energía tales como el almidón y otros componentes se recuperarán, fortaleciendo el árbol con el tiempo.

Factores que afectan la recuperación

Varios factores determinan el período de recuperación necesario antes de empezar la poda restaurativa.

Edad del árbol

Este es un factor importante—los árboles jóvenes tienen una mayor proporción de madera viva/muerta, lo cual les permite una rápida recuperación. Esto significa que usted puede empezar la restauración de los árboles jóvenes tan pronto pase la tormenta entre el primero y el segundo año. Los árboles más viejos pueden necesitar dos años o más para rebrotar antes de que usted le remueva ramas vivas.

Tamaño del árbol

Los árboles adultos pequeños (de menos de 30 pies de altura en su madurez) necesitan menos visitas para la poda por que no tienen defectos estructurales críticos. Una rama caída de un Crape myrtle por ejemplo, no causa tanto daño como una rama caída de un Live oak. Los árboles grandes son prioridad durante la recuperación de un huracán. Sin embargo, los árboles pequeños necesitan tiempo para recuperarse. Tratar de podar mucha madera viva en una visita, solo sería un problema para la salud tanto de un árbol pequeño, como lo sería para uno grande.

Especie del árbol

Conocer las especies de los árboles es particularmente importante en la formulación de un plan de poda. Algunas especies son de vida corta por que son propensas a la pudrición. Por lo tanto, puede ser más eficiente enfocar los esfuerzos de restauración en árboles resistentes a la pudrición y que tienen más probabilidades de vivir por más tiempo. Ejemplos comunes en Florida son el Live oak y el Buttonwood, los cuales resisten a la pudrición y se recuperan mucho mejor del daño que el Laurel oak, el cual a menudo tiene mucha pudrición interna.

Estado sanitario del árbol

El estado sanitario del árbol previo al huracán afecta su habilidad para recuperarse. Los árboles saludables se recuperan más rápido que aquellos con salud pobre. Los árboles más viejos con sistemas radiculares podridos, tallos podridos y ramas grandes muertas tienen más probabilidades de deteriorarse o morir que de recuperarse. Estas condiciones preexistentes pueden hacer más apropiado remover el árbol en vez de recuperarlo.

Magnitud del daño

La magnitud del daño sufrido por el árbol también determinará el tiempo de espera antes de podar las ramas vivas. A mayor daño del árbol, más larga debe ser la espera antes de la poda. Árboles gravemente dañados deben ser observados para determinar si se están recuperando o deteriorando. Los árboles en
recuperación rebrotan agresivamente, mientras que los árboles en proceso de deterioro tienen unos pocos rebrotes, con pocas hojas creciendo lentamente.

III. Programa de Poda Restaurativa: Manejo de Rebrotos

Una vez se ha determinado que vale la pena restaurar un árbol, que se ha limpiado su copa y que ha pasado un tiempo apropiado para su recuperación, es hora de empezar con el manejo de los rebrotos. El manejo de los rebrotes se hace para que éstos crezcan como ramas fuertes y así reconstruir la estructura del árbol.

Primera visita de poda

Uno o dos años después de la tormenta

Las partes muertas de las ramas que no rebrotaron y cualquier otra rama muerta y muñón muertos en la copa deben ser removidos primero. Los rebrotes en los árboles en recuperación crecen rápidamente y debido a la competencia por luz y espacio se pueden generar rebrotes largos y débiles. Por esto la meta para la primera visita de poda es reducir algunos rebrotes, remover otros y dejar los demás (Figuras 12 y 13). Frecuentemente, los rebrotos más fuertes se desarrollan en ramas laterales, por lo tanto son los que se deben dejar. Deje todas las ramas laterales más bajas con rebrotes en desarrollo, los cuales permanecerán para fomentar su fortalecimiento. Remueva otros localizados cerca a los rebrotes seleccionados para permitirles a éstos espacio para su crecimiento. Idealmente, los rebrotes seleccionados deben estar espaciados entre ellos aproximadamente a 12 pulgadas o más. Algunos rebrotes deberán ser reducidos en vez de removidos para que continúen con la formación de las reservas de energía y aumenten la solidez de las ramas dañadas. Si no han muerto naturalmente, los rebrotes reducidos se removerán en una vista posterior de poda.

Tenga en cuenta que si la primera visita de poda se hace varios años después de la tormenta, puede ser...
que haya rebrotes en contacto, entrecruzados. En la poda de restauración se deben remover o reducir estos rebrotes para asegurar que no estén en contacto. Sepárelos para que cada uno se desarrolle apropiadamente.

Segunda y tercera visitas de poda
Deje un tiempo de aproximadamente un año entre las visitas de poda. El objetivo de la segunda y tercera visitas es continuar con el manejo de los rebrotes, conservando los rebrotes más fuertes para que sean las ramas nuevas, y continuar también con la reducción y remoción de los rebrotes que estén compitiendo con éstos. Los árboles más grandes y más dañados pueden necesitar más visitas de poda, mientras que los árboles jóvenes o moderadamente dañados pueden necesitar solo una segunda visita para que se complete el manejo de sus rebrotes. Una vez más, la paciencia es importante en este proceso. Si los rebrotes se remueven demasiado rápido y no se da suficiente tiempo para la acumulación de amídones en la madera, el árbol rebrotará débilmente. Si en los cortes de poda hechos durante el proceso de la limpieza de la copa, se dejaron muñones que están rebrotando pobremente, considere su remoción. También remueva cualquier rama muerta que haya en ese momento.

La meta del manejo de rebrotes es convertir un rebrote en una rama nueva líder que cicatrice sobre el corte de poda en la punta de la rama. Las ramas grandes (de 4 o más pulgadas de diámetro) tienen menos posibilidades de cicatrizar que las ramas más pequeñas. Una rama nueva puede establecerse en un período de tiempo de entre uno o dos años cuando el diámetro de la punta partida es de 1-2 pulgadas (Figura 14). Las ramas más grandes pueden llevar años para que un rebrote crezca cicatrizando el corte de poda lo que hará necesarias más visitas para reducir y remover rebrotes.

Visitas de poda posteriores

Cuatro o más años después de la tormenta

Una vez que la copa ha sido podada varias veces y se hayan establecido los líderes y las ramas nuevas en las ramas quebradas, es el tiempo para la poda estructural. La prioridad de la poda estructural es reducir los tallos que son mayores que la mitad del diámetro del tronco principal. Los árboles se quebran en las tormentas en las áreas de la copa que son estructuralmente débiles como tallos codominantes, corteza incluida y desbalance en copas demasiado extendidas.
IV. Restauración de palmas

Como con los árboles de madera dura, la prioridad cuando se restauran palmas es eliminar el peligro y minimizar la remoción de tejido vivo. El riego una a tres veces por semana también puede ayudar a la recuperación si hay falta de lluvia.

Paso 1

Remueva las frondas muertas que puedan caer y golpear un objetivo.

Al igual que con la limpieza de la copa en árboles, la prioridad cuando se limpian las palmas es remover el peligro potencial que pueden causar. La palma en primer plano en la Figura 15 tiene frondas cafés colgando que deben ser removidas. Sin embargo, no todas las frondas que estén colgando necesitan ser removidas (vea Paso 3).

Paso 2

Remueva las frondas que estén cruzadas cubriendo la yema.

Cuando las frondas partidas están cruzadas cubriendo la yema de la palma, pueden estar deteniendo el nuevo crecimiento de la palma (Figura 16). Esas frondas deben ser removidas.

Paso 3

Deje en la palma las frondas verdes colgando hasta que salgan las nuevas.

Después del huracán, las frondas que quedan colgando pegadas al tronco de la palma caerán de éste. Muchas de ellas permanecen aún verdes, conectadas a la palma (Figura 17). Esas frondas se deben mantener hasta que el follaje nuevo salga ya que ellas fotosintetizan y ayudan a recobrar las reservas de energía y a recuperarse.
Paso 4

Deje las frondas que se están poniendo amarillas o tengan las puntas cafés.

Para corregir las deficiencias nutricionales, espere hasta que las hojas nuevas empiecen a crecer y establezca un programa de fertilización adecuado para la palma. Esto significa que hay que esperar hasta seis meses después de la tormenta. La palma de la Figura 18 muestra un amarillo intenso o clorosis en las frondas inferiores debido a la falta de nutrientes como el potasio y el magnesio. Las frondas amarillentas o tornándose marrón todavía suministran energía para el crecimiento, por lo tanto remover demasiado follaje reduce el vigor de las palmas y hasta es posible que las mate.

Evite podar demasiado las palmas

Los dos errores más comunes con las palmas son el uso equivocado de fertilizantes y la poda excesiva (Figura 19). Es más, el uso de un fertilizante equivocado a menudo lleva a la poda excesiva, ya que durante el mantenimiento usual de la palma (aunque sea potencialmente perjudicial) se remueven todas las hojas que estén amarillas o que tengan las puntas marrón. Los arboricultores reportan que, con una poda excesiva, las palmas sufren más daño durante los huracanes que cuando no han sido podadas. Esto muestra la importancia de la poda apropiada. La remoción de muchas frondas sobreexpone la yema apical muy delicada al viento y al daño potencial. Recuerde, las palmas necesitan las frondas viejas para proteger su yema, así como para suministrar nutrientes para el crecimiento.

V. Empiece un programa de manejo para el árbol

Las comunidades se recuperan mucho más rápido después de un huracán con el apoyo de un equipo de arboricultores comerciales y municipales entrenados profesionalmente que suministren mantenimiento rutinario a los árboles incluyendo la poda apropiada. A medida que más comunidades reconocen la necesidad de destinar recursos para el cuidado de los árboles, se promoverá el crecimiento de la profesión.
Bibliografía

Hurricane-Damaged Palms in the Landscape: Care after the Storm

Monica L. Elliott and Timothy Broschat

While many palm species are adapted to windstorms, a hurricane can damage even the most tolerant palms. This publication provides suggestions about what to do after a windstorm has occurred once it is safe to venture outside to care for the landscape.

It is important to understand how a palm grows. The growing point of a palm is the apical meristem, often referred to as the palm bud or palm heart. It is located at the top of the trunk, surrounded by the leaf bases. All new leaves come from this bud. If the bud is severely damaged, new leaves fail to develop, and the palm eventually dies.

Unless the palm trunk is broken or it is otherwise obvious that the bud has been damaged, there is no way to predict which palms will survive wind damage and which ones will not, as the bud is not visible or accessible for inspection. However, it is apparent after several years of hurricanes in Florida that certain palm species are more tolerant of high winds than others. The native sabal palm (*Sabal palmetto*) and royal palm (*Roystonea regia*) both tend to survive high winds, but in very different ways. While sabal palms lose very few leaves, royal palms (which have a crownshaft) shed most of their leaves.

The following are some suggestions on caring for palms after a hurricane. The main point to note (and inform clientele) is that it will be at least 6 months (and probably longer) before it is apparent that a palm will recover. Recovery consists of new leaves emerging from the bud. In some cases, the new leaves will not look normal—they may be abnormally shaped and/or shorter than normal, or the leaflets or leaf segments may have necrotic (dead tissue) edges. However, over time, each successive new leaf should appear a little more normal until eventually, normal leaves appear. Again, this takes time, so patience is required. It is recommended to monitor damaged palms carefully during the next 1–2 years.

It is also important to understand that because of the storm, people are examining their landscape more closely than they probably did before the storm. Thus, they may not realize that the palms had problems (such as nutrient deficiencies—see http://edis.ifas.ufl.edu/ep273 prior to the storm. The challenge is to determine which problems existed before the storm (and address them accordingly) as opposed to those that developed because of the storm.

Broken Palms

If the trunk of a single-stemmed palm is broken, it should be cut at the base and removed. It will not recover. However, a clustering palm has a lateral meristem at the soil line. Thus, new stems will emerge, and the palm should recover in most cases. Cut the broken stems as close to the soil line as possible. If possible, the stumps of single-stem palms should be removed or ground up. If the stumps are left in place, they should be monitored for *Ganoderma zonatum*.
Hurricane-Damaged Palms in the Landscape: Care after the Storm

conk (shelf-like mushroom) development. As soon as a conk starts to form, it should be removed, placed in a bag and the bag placed in garbage that will be incinerated or buried. The fungus is not harmful to people or pets, but it may kill the other palms in the landscape if it spreads. See *Ganoderma Butt Rot of Palms* (http://edis.ifas.ufl.edu/pp100).

Uprooted Palms

Palms should be stood upright as soon as possible and replanted at the same depth at which they were planted previously. Bracing is necessary and should be kept in place for at least 6 months. These “replanted” palms should be treated as if they were being installed for the first time. **Thus, water management is the most important component of a management program in the first 6 months.** The root zone should be irrigated as necessary during the re-establishment period. Refer to *Transplanting Palms in the Landscape* (http://edis.ifas.ufl.edu/ep001) for more information about caring for transplanted palms.

Leaf Removal

If the broken leaves are still green, it is recommended to leave them attached, as they will provide photosynthetic capability for the palm as it recovers. However, if only a few leaves are broken, then removing these leaves (and only these leaves) may be acceptable. See *Pruning Palms* (http://edis.ifas.ufl.edu/ep443) for more information about how to remove palm leaves.

Fertilization

For palms that are not uprooted, maintain the same fertilization program that was in place prior to the storm. For replanted palms, no extra fertilizer should be applied to the root zone until the palm exhibits new growth (i.e., new leaves). This will take a month or longer in many cases. There is no known benefit to applying a micronutrient spray to the canopy, and it may be harmful if applied incorrectly. See *Fertilization of Field-Grown and Landscape Palms in Florida* (http://edis.ifas.ufl.edu/ep261) for more information about proper fertilization of landscape palms.

Fungicides

There is no research to document the benefits of using fungicides after a hurricane. The theory behind this common recommendation is that if the apical meristem (bud) has been damaged, then it is possible that fungal pathogens (primarily *Phytophthora* or *Thielaviopsis*) or secondary bacterial pathogens may become established in the bud and cause a bud rot (see *Bud Rot of Palm* [http://edis.ifas.ufl.edu/pp144]). The only chemical pesticides that may have an effect on both fungi and bacteria are copper-based fungicides (not copper nutrient sprays). These fungicides should be applied as a drench to the bud, not to the soil, as these fungicides do not translocate from the soil to the bud area where they are needed.

All fungicides must be used in accordance with the label. Do NOT mix fungicides together or with a nutrient spray unless the label indicates it is safe to do so. There is no research to indicate copper-based fungicides will help wind-damaged palms, but they probably will not hurt the palm if used according to the label. The normal recommendation is not to use copper-based fungicides more than twice because they are not prone to degradation in the environment.

Based on observations from previous hurricane seasons, it is obvious that many palms, especially native palm species, survive windstorms without any fungicide applications. Thus, it may be best to reserve fungicide use for those palms that are highly valuable or severely damaged.

Yellow New Leaves Immediately after the Storm

Although this phenomenon has been observed on other palms, it is most commonly seen on royal palms. The youngest leaf of a palm is the spear leaf, which is actually an unopened leaf. It is normally upright (ramrod straight) in the center of the canopy. Under normal circumstances, it opens slowly from the tip to the leaf base. As each portion of the leaf expands, it becomes the normal color associated with mature leaves. In a windstorm, it is not uncommon for this spear leaf to be forced open prematurely. If this occurs, the leaf appears chlorotic (pale green or yellow) because it was not fully developed. Typically, these leaves assume a normal green color after a few days. As stated previously, as long as the bud (from which all subsequent new leaves emerge) is not damaged, the palm will produce a new canopy to replace the one that was lost in the hurricane. It will take at least a year (and usually longer) for the entire canopy to be replaced.

Soluble Salts in the Soil

If the landscape has been flooded with salt water, the salts from evaporated or percolated salt water can cause serious injury to many species of palm. This is especially true if the salt water remains on the landscape for more than a few hours, or if there is no significant rainfall after the salt water...
recedes. In the latter case, it may help to heavily leach the soil around palms with fresh water as soon as possible. Salt injury typically causes tip necrosis on leaves throughout the canopy. See *Physiological Disorders of Landscape Palms* (http://edis.ifas.ufl.edu/ep263) for more information about soil-soluble salt injury.
Preparation for and Recovery from Hurricanes and Windstorms for Tropical Fruit Trees in the South Florida Home Landscape

Jonathan H. Crane and Carlos F. Balerdi

Pre-Hurricane Planning and Prevention

Well in advance of the hurricane season an assessment of the location and size of the fruit trees in the home landscape should be made. Ideally, fruit trees with a potential to become large (e.g., avocado and mango) and not regularly pruned should be planted 25 ft or more away from the home, other structures (e.g., garage and tool shed), power lines, and other trees. If, however, a large fruit tree is already in-place, a certified arborist should be contacted to reduce tree height and properly prune the tree to open the canopy to wind movement. Alternatively, large, potentially hazardous fruit trees may be transferred to a new location or removed completely and a new fruit tree established at a greater distance from the home, structure, or power lines. Before work begins, check with local county agencies on regulations for pruning and/or removing fruit trees from the home landscape.

The most effective cultural practice to reduce the potential for tree toppling and major damage is managing tree height and spread. Ideally, fruit trees in the home landscape should be pruned annually or biannually beginning soon after planting to develop a strong tree structure and later to remove dead wood, reduce tree height and spread (if needed occasionally), and open the tree to wind movement. Small fruit trees such as guava and sugar apple may be kept at 3 to 12 ft and 6 to 12 ft high, respectively. Potentially large trees like avocado may be kept at 10 to 15 ft and mango at 6 to 15 ft high with judicious but regular pruning (Table 1).

Proper planting of fruit trees will reduce the potential for storm related toppling and uprooting in the future. The deeper and more extensive the lateral root system the less likely the tree will topple, uproot, or lean after a windstorm. Root growth and establishment will be facilitated by loosening a large area of soil during the planting process. In sandy type soils found throughout much of Florida, the planting hole should be 3 times the size of the container the tree came in. In Miami-Dade and Monroe Counties where the soil is often a rocky, limestone-based material, augering or excavating large holes or multiple holes is essential in establishing a root system with some ability to anchor trees in place.

Flooding potential before planting is an important factor to consider in south Florida. If there is a possibility of flooding, then consider bedding or mounding the soil, and choose flood-tolerant fruit species.

Tools to have on hand include a lopper, a hand clipper and a hand saw, a pole saw, a shovel, a pick and a digging bar, and, if possible, a chainsaw with extra chains and fuel.
Before a storm, photographs of the landscape may be useful documentation, especially if the landscape is insured. Place a person in the photograph to show the size of the trees before the storm.

Post-Hurricane Practices

Documentation

Post-storm documentation may be valuable for insurance claims where fruit trees cause damage to the home and the landscape, if the landscape is insured. Take photos of the damage to the home structures and fruit trees and, as with the pre-storm photographs, have someone stand in the pictures to provide scale. Write down the type of damage to each tree, e.g., toppled, wind-thrown, major limb damage, flooded, etc.

Immediate Sun Protection

Overheating of sun-exposed tree trunks and limbs (commonly called sunburn) is potentially a severe problem encountered when fruit trees are toppled or leaning after a storm. Immediately covering the upper, sun-exposed surface of the tree trunk, major scaffold limbs and exposed roots with detached (fallen) limbs and/or other debris will shade them from sunlight. Alternatively, immediately painting the exposed areas with a 50/50 mixture of white latex paint and water will reflect sunlight and keep the exposed surfaces from overheating due to excessive sun exposure.

Toppled Trees

Fruit trees that have fallen over but still have some root system in the ground and have leaf canopy remaining can be saved but, are in danger of drying out (drought stress). Pruning to remove some but not all the canopy (maybe 1/3 of what remains) will reduce the water demand of the tree by reducing the water loss from the tree.

Resetting Trees

Resetting large (15 ft tall or greater) trees requires large equipment such as a tractor or backhoe, and may not be feasible for most home owners to do themselves. Hiring a licensed arborist or landscape contractor may be appropriate.

To stand up toppled trees that have part of the root system in the ground, reset the trees back to the same soil level they were before falling. Resetting steps include a) pull back the soil from the area where the roots came out of the ground so the tree will reset at or near the soil level at which it grew before it toppled; b) remove badly broken roots (but try to leave as many as possible) and any tap roots that prevent the tree from resetting at or near the same soil level as before and; and c) cut back the top of the tree (the larger the tree the more you may need to cut in order to reduce the trees top weight) in order to pull the tree up. It may also be appropriate to remove some (not all) canopy to reduce water demand and loss. When using equipment (truck, tractor, or backhoe) to stand a tree upright, use only cloth or rope slings because cable-wire or chain slings damage tree bark, and if they snap, they are very dangerous. Once the tree is standing, place one or more Y-shaped braces against the trunk to steady it. Braces may be made out of limbs pruned off or broken off damaged trees. Finally, after applying water to fill the excavated hole, fill in the reset tree with soil to cover the roots and again soak the root area with plenty of water. This should work for most large fruit trees.

Large trees that remained standing after the windstorm and that have retained some of their leaves may not need to be protected from sun exposure or only parts of the tree may need to be covered or painted. However, even though these trees may have only a few broken limbs here and there and may look relatively sound, the root system most likely has been damaged to some extent, and you may begin to see drought stress symptoms, e.g., leaf wilting, fruit drop, stem and limb dieback. We recommend that a) if the tree has fruit, remove most or all of it, and b) remove 1/3 to 1/2 the canopy to reduce the water demands of the canopy on the reduced root system. In general, trees showing signs of drought stress that have fruit tend to decline and die at a greater rate than those with little or no fruit.

Recommendations for small trees that have fallen over include covering the trunk and major limbs with debris, removing 1/3 to 1/2 of the canopy, and resetting the tree to an upright position as soon as possible. Follow the same procedure for resetting used for large trees. Small trees that have not fallen over and that have retained their leaves and/or fruit should be monitored closely for signs of drought stress, an indication of root and/or trunk damage. As with large trees, it may be prudent to remove some or all of the fruit first and if the tree continues to show signs of further decline, remove some of the canopy.

Flooded Trees

The tolerance to flooding or saturated soil conditions of tropical and subtropical fruit trees varies (Table 2). Some fruit trees such as avocado and papaya may not withstand more than a day or two of saturated or flooded soil conditions. In contrast, mango trees may withstand several
weeks and guava trees a week of saturated or flooded soil conditions.

Symptoms of flooding stress include dead roots, leaf and stem wilting, leaf yellowing and browning, leaf drop, stem and limb dieback, fruit shriveling and/or drop, and tree death. Fruit should be removed from trees with little to no tolerance to saturated soil conditions, and trees showing signs of flooding stress should have up to ½ the leafy tree canopy removed to reduce the stress imposed by soil conditions. Reducing the size of the canopy will improve the chances for tree survival.

Effect of Post-Storm Weather Conditions

The hurricane and tropical storm season in Florida lasts from June through November. The minimum and optimum temperatures necessary for tree growth of tropical and subtropical fruit trees vary (Table 3), but warm to hot weather with periodic rainfall after early and mid-season windstorms is generally conducive to new shoot and leaf growth and rapid recovery of the tree canopy, whereas cooler temperatures and less frequent rainfall after late-season windstorms, e.g., October through November, result in less canopy recovery and/or nutrient deficient regrowth.

Weather conditions after a late-season hurricane may not provide enough hours above the minimum temperatures required for root, shoot, and leaf growth from November through March (Table 3 and Table 4). Water and nutrient uptake for many tropical/subtropical fruit crops are slowed or inhibited during cool weather thus making tree growth less vigorous and potentially nutrient deficient. Recovery from late windstorms may take 4 to 8 months longer than from early and mid-season windstorms.

Watering

Trees that remained standing after the storm with most of their canopy intact should be watered regularly (e.g., 2 to 3 times per week) to keep an adequate soil moisture level, especially during prolonged dry periods. Only trees showing drought symptoms should have 1/3 to 1/2 of the canopy removed to reduce tree water loss. For trees that have few to no leaves or that toppled and were reset, reduce watering until new shoots and leaves begin to emerge, and then resume regular watering. Do not over water.

Fertilizing

Trees that remain standing after a storm with 1/3 or more of the canopy remaining should be fertilized frequently with small amounts of complete (nitrogen, phosphate, potash, magnesium) fertilizers. Once leaves emerge and are about half-grown, foliar micronutrients (zinc, manganese), and soil drenches of chelated iron materials should be made every 2nd or 3rd month until the leaves are full-grown. Once the new growth has matured, fertilize trees normally.

Trees with few to no leaves or with some of the canopy cut off by pruning should be fertilized with a reduced amount of fertilizer (e.g., if half the leaves are gone, reduce the rate by 50%). However, as the new shoots and leaves begin to emerge, use small amounts of fertilizer frequently. Trees that toppled and were reset should only be fertilized with a small amount of fertilizer as new shoots and leaves begin to emerge. Once the new growth has matured, fertilize trees normally.

Tree growth and recovery will be much slower after late season hurricanes or tropical storms. To encourage healthy regrowth more frequent light applications of complete fertilizers, foliar micronutrients, and soil drenches of chelated iron may be necessary.

Insect and Disease Control

Beetles that bore into the bark of damaged trees may be a problem after a tropical storm or hurricane. Typically trees undergo drought stress after a storm due to root damage. These beetles can sense trees under drought stress and attack the tree. The beetles inoculate the tree with a fungus that then colonizes the tree and kills it. Symptoms of bark boring beetles include small holes along major limbs and or the trunk with frass (excrement that resembles sawdust). Prune off dead or dying branches infested with borers and remove the debris from the landscape. The best remedy is to reduce the potential for tree damage and the chances of water and heat stress on the trees. That means annual pruning to reduce tree size and potential toppling and covering the exposed trunks and limbs of fallen trees as quickly after the storm as possible.

Weed Control

Due to the loss of tree canopy and the subsequent increase in soil light exposure, weeds may proliferate after a windstorm or hurricane. Weeds should be controlled manually or with approved herbicides to reduce the competition between the recovering tree and weeds for water and nutrients. Do not use residual herbicides because they may cause damage to the trees. Four to 6 inches of mulch applied several inches from the trunk outward to the previous drip-line will assist in suppressing weed growth and help maintain soil moisture. Do not place mulch against the tree trunk. The bark and wood may rot if the mulch touches the tree.
Hurricane Tolerance of Selected Tropical Fruit Trees

Abiu
There is very limited experience with abiu, but its hurricane tolerance may be similar to that of mamey sapote and caimito.

Atemoya and Sugar Apple
Strong winds generally result in leaning or toppled atemoya and sugar apple trees, and attempts to reset trees to an upright position are frequently unsuccessful. Generally, tree regrowth is slow and nutrient deficient, and trees may decline slowly over a long period of time. Replanting may be a better option if trees begin to decline.

Avocado
Avocado trees usually reset and recover well from hurricane wind damage and historically have resumed fruit production in 1 to 3 years after a storm. Avocado trees harvested before a storm event generally had less damage than those with fruit. Avocado trees exposed to flooding for more than a day or two generally declined or died.

Banana
In general, banana plants with fruit topple and the fruit is damaged or lost. However, banana plants recover well from hurricane damage because they regrow new pseudostems from the underground growing points.

Black Sapote
Black sapote trees tend to reset and recover well from hurricane damage. Fruit production generally resumed 1 to 2 years after a storm.

Cocoa
Those cocoa plants adjacent to structures for cold protection may be damaged but appear to regrow and resume pod production in 2 to 3 years.

Coffee
Coffee plants may be damaged by overhanging trees or limbs that fall. However, coffee plants tend to regrow and resume bean production in 2 to 3 years.

Canistel
Canistel trees generally reset and recover well from hurricane damage, and fruit production resumed 1 to 2 years after a storm.

Carambola
Most carambola trees reset and re-grow vigorously after a storm. Historically carambola trees resumed fruit production in 6 to 9 months.

Guava
Guava trees that were kept small typically remained standing after hurricane wind damage and resumed production in 6 to 9 months. Guava trees that toppled and were reset grew well and resumed fruit production in 1 to 2 years.

Jackfruit
The results of resetting jackfruit trees after hurricane damage have been mixed; some recover well, others decline slowly. Severe dieback of branches should be expected.

Longan
Longan trees generally reset well and recover well from hurricane wind damage and resume fruit production in 1 to 3 years. In some cases, regrowth occurs from the roots at the base of the tree, resulting in multiple trunks. Select one strong new shoot and eliminate the rest.

Loquat
Most loquat trees recover well from hurricane damage and resume fruit production in 1 to 2 years.

Lychee
The limb structure of ‘Mauritius’ is weak and brittle, and historically ‘Mauritius’ lychee trees sustain more limb damage than ‘Brewster’ trees. Results of resetting have been mixed with some trees regrowing well and resuming fruit production in 1 to 2 years. Trunk splitting to the ground level is common. It causes severe damage and requires tree removal.

Mamey Sapote
Mamey sapote trees generally reset and re-grow well after hurricane damage. However, those trees with major limb damage may not resume production for 4 to 5 years.

Mamoncillo
Most mamoncillo trees reset and re-grow well after hurricane damage. However, those trees with major limb damage may not resume production for 5 to 6 years.

Mango
Resetting toppled mango trees has historically resulted in very mixed results; some trees declined, and others re-grew.
well. This is because mango trees appear to be highly susceptible to sunburn. Fruit production may not resume for 1 to 3 years.

Pitaya

Pitaya vines may sustain damage along with the trellis system upon which they grow. Free-standing supports appeared to be more damaged than trellis systems. However, they appear to regrow from those plant parts left after the wind-storm.

Sapodilla

Sapodilla trees have historically withstood hurricane-force winds well. They usually resume fruit production in 1 to 2 years.

Summary

Hurricane damage to tropical and subtropical fruit trees in the home landscape may be minimized by annual or bi-annual pruning to reduce tree size and open the canopy to wind movement. Reset trees as soon as possible to reduce the potential for sunburn along the trunk, which results in weak tree regrowth, tree decline, or tree death. Keeping in mind their ultimate size, plant new fruit trees away from buildings, structures, and power lines to minimize damage to these structures. When deciding whether or not to reset a tree, base the decision on the size of the tree, and get professionally licensed arborists to handle medium to large trees. Trees exposed to flooding may need some of their canopy removed to increase the chances for tree recovery.

Adjust fertilizer practices when trees are damaged, emphasizing frequent, light applications of all plant nutrients. Adjust watering to the amount of tree damage and the weather conditions. Control insects to reduce further damage to the tree after a storm. Control weeds to prevent competition between the tree and weeds for water and nutrients.

References

Table 1. Recommended Plant Height for Tropical Fruit Trees Grown in the Home Landscape in Florida.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Recommended Maintenance Tree Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiu</td>
<td>Pouteria caimito</td>
<td>8–12</td>
</tr>
<tr>
<td>Atemoya</td>
<td>Annona cherimola x A. squamosa</td>
<td>8–12</td>
</tr>
<tr>
<td>Avocado</td>
<td>Persea Americana</td>
<td>10–15</td>
</tr>
<tr>
<td>Banana</td>
<td>Musa hybrids</td>
<td>---</td>
</tr>
<tr>
<td>Black sapote</td>
<td>Diospyros digyna</td>
<td>12–15</td>
</tr>
<tr>
<td>Caimito (star apple)</td>
<td>Chrysophyllum cainito</td>
<td>8–12</td>
</tr>
<tr>
<td>Canistel (egg fruit)</td>
<td>Pouteria campechiana</td>
<td>10–12</td>
</tr>
<tr>
<td>Carambola</td>
<td>Averrhoa carambola</td>
<td>6–12</td>
</tr>
<tr>
<td>Cashew</td>
<td>Anacardium occidentale</td>
<td>10–12</td>
</tr>
<tr>
<td>Citrus</td>
<td>Citrus species</td>
<td>10–14</td>
</tr>
<tr>
<td>Cocoa</td>
<td>Theobroma cacao</td>
<td>6–8</td>
</tr>
<tr>
<td>Coconut</td>
<td>Cocos nucifera</td>
<td>---</td>
</tr>
<tr>
<td>Coffee</td>
<td>Coffea arabica, C. canephora</td>
<td>5–15</td>
</tr>
<tr>
<td>Guava</td>
<td>Psidium guajava</td>
<td>3–12</td>
</tr>
<tr>
<td>Jaboticaba</td>
<td>Myrciaria cauliflora</td>
<td>8–12</td>
</tr>
<tr>
<td>Jackfruit</td>
<td>Artocarpus heterophyllus</td>
<td>8–14</td>
</tr>
<tr>
<td>Longan</td>
<td>Dimocarpus longana</td>
<td>10–15</td>
</tr>
<tr>
<td>Loquat</td>
<td>Eriobotrya japonica</td>
<td>6–12</td>
</tr>
<tr>
<td>Lychee</td>
<td>Litchi chinensis</td>
<td>10–15</td>
</tr>
<tr>
<td>Macadamia</td>
<td>Macadamia integrifolia and M. tetraphylla</td>
<td>12–14</td>
</tr>
<tr>
<td>Mamey sapote</td>
<td>Pouteria sapota</td>
<td>12–15</td>
</tr>
<tr>
<td>Mamonicillo</td>
<td>Melicoccus bijugatus</td>
<td>12–15</td>
</tr>
<tr>
<td>Mango</td>
<td>Mangifera indica</td>
<td>6–15</td>
</tr>
<tr>
<td>Pineapple</td>
<td>Annanas comosus</td>
<td>---</td>
</tr>
<tr>
<td>Pitaya</td>
<td>Hylocereus undatus and hybrids</td>
<td>---</td>
</tr>
<tr>
<td>Sapodilla</td>
<td>Manilkara zapota</td>
<td>12–15</td>
</tr>
<tr>
<td>Soursop</td>
<td>Annona muricata</td>
<td>8–12</td>
</tr>
<tr>
<td>Spondias</td>
<td>Spondias species</td>
<td>8–12</td>
</tr>
<tr>
<td>Sugar apple</td>
<td>Annona squamosa</td>
<td>8–12</td>
</tr>
<tr>
<td>Tea</td>
<td>Camellia sinensis</td>
<td>5–6</td>
</tr>
<tr>
<td>White sapote</td>
<td>Casimiroa edulis and C. tetrameria</td>
<td>10–15</td>
</tr>
</tbody>
</table>

*a Not grown for its fruit; grown for its leaves.
Table 2. Flooding tolerance of selected tropical and subtropical fruit crops in the home landscape.

<table>
<thead>
<tr>
<th>Tolerant</th>
<th>Moderately tolerant</th>
<th>Not tolerant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caimito</td>
<td>Abiu</td>
<td>Atemoya(^1)</td>
</tr>
<tr>
<td>Coconut</td>
<td>Banana(^2)</td>
<td>Avocado</td>
</tr>
<tr>
<td>Grafted citrus(^1)</td>
<td>Canistel</td>
<td>Canistel(^6)</td>
</tr>
<tr>
<td>Guava</td>
<td>Carambola(^1)</td>
<td>Cashew(^4)</td>
</tr>
<tr>
<td>Mango(^5)</td>
<td>Cocoa(^6)</td>
<td>Coffee(^6)</td>
</tr>
<tr>
<td>Sapodilla</td>
<td>Tahiti Lime</td>
<td>Jaboticaba</td>
</tr>
<tr>
<td>Spondia species(^4)</td>
<td>Longan(^1)</td>
<td>Jackfruit</td>
</tr>
<tr>
<td>Soursop(^7)</td>
<td>Lychee(^1)</td>
<td>Loquat(^1)</td>
</tr>
<tr>
<td>Black sapote(^8)</td>
<td>Macadamia(^4)</td>
<td>Mamey sapote</td>
</tr>
<tr>
<td></td>
<td>Mamadocio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passion fruit(^1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pineapple</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pitaya(^9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugar apple (anon)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tea(^{10})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White sapote</td>
<td></td>
</tr>
</tbody>
</table>

Sources:
\(^1\) Syvertsen and Llyod;
\(^2\) Stover and Simmonds;
\(^3\) Schaffer and Whiley;
\(^4\) Verheij and Coronel;
\(^5\) Whiley et al.;
\(^6\) Willson;
\(^7\) Núñez-Elisea et al.;
\(^8\) Bartholomew; and
\(^9\) Mejía Ruiz and Múnera.
\(^{10}\) Not grown for its fruit; grown for its leaves.

Table 3. Minimum temperatures for vegetative growth and optimum range of temperatures for growth of selected tropical fruits.

<table>
<thead>
<tr>
<th>Range in Temperatures (°F) for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Abiu(^1)</td>
</tr>
<tr>
<td>Atemoya(^2)</td>
</tr>
<tr>
<td>Avocado(^3)</td>
</tr>
<tr>
<td>Banana(^4)</td>
</tr>
<tr>
<td>Black sapote</td>
</tr>
<tr>
<td>Caimito (star apple)</td>
</tr>
<tr>
<td>Canistel (egg fruit)</td>
</tr>
<tr>
<td>Carambola(^2)</td>
</tr>
<tr>
<td>Cashew</td>
</tr>
<tr>
<td>Cocoa(^5)</td>
</tr>
<tr>
<td>Coconut(^8)</td>
</tr>
<tr>
<td>Coffee(^3)</td>
</tr>
<tr>
<td>Guava(^7)</td>
</tr>
<tr>
<td>Jaboticaba</td>
</tr>
<tr>
<td>Jackfruit</td>
</tr>
<tr>
<td>Longan(^1)</td>
</tr>
<tr>
<td>Loquat</td>
</tr>
<tr>
<td>Lychee(^2)</td>
</tr>
<tr>
<td>Macadamia(^2)</td>
</tr>
<tr>
<td>Mamey sapote</td>
</tr>
<tr>
<td>Mamadocio</td>
</tr>
<tr>
<td>Mango(^6)</td>
</tr>
<tr>
<td>Papaya(^1)</td>
</tr>
<tr>
<td>Passion fruit(^1)</td>
</tr>
<tr>
<td>Pineapple(^3)</td>
</tr>
<tr>
<td>Pitaya(^7)</td>
</tr>
<tr>
<td>Sapodilla</td>
</tr>
<tr>
<td>Soursop</td>
</tr>
<tr>
<td>Spondia</td>
</tr>
<tr>
<td>Sugar apple(^3)</td>
</tr>
<tr>
<td>Tea(^{10})</td>
</tr>
<tr>
<td>White sapote</td>
</tr>
</tbody>
</table>

Sources:
\(^1\) Lim;
\(^2\) Schaffer and Andersen;
\(^3\) Schaffer and Whiley;
\(^4\) Stover and Simmonds;
\(^5\) Willson;
\(^6\) Whiley and Schaffer;
\(^7\) Noble and Bobich;
\(^8\) Romney and;
\(^9\) Malézieux, Côte, and Bartholomew.
\(^{10}\) Not grown for its fruit; grown for its leaves.
Table 4. Mean Range and Average Ambient Temperatures from September to August in the Homestead, Florida, Area

<table>
<thead>
<tr>
<th>Homestead Area</th>
<th>Ambient Temperatures (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Range</td>
</tr>
<tr>
<td>September</td>
<td>72–89</td>
</tr>
<tr>
<td>October</td>
<td>68–86</td>
</tr>
<tr>
<td>November</td>
<td>58–78</td>
</tr>
<tr>
<td>January</td>
<td>54–76</td>
</tr>
<tr>
<td>February</td>
<td>55–77</td>
</tr>
<tr>
<td>March</td>
<td>59–81</td>
</tr>
<tr>
<td>April</td>
<td>62–84</td>
</tr>
<tr>
<td>May</td>
<td>67–87</td>
</tr>
<tr>
<td>June</td>
<td>71–89</td>
</tr>
<tr>
<td>July</td>
<td>72–90</td>
</tr>
<tr>
<td>August</td>
<td>73–90</td>
</tr>
</tbody>
</table>

Introduction

Planting and establishing trees is all about managing air and moisture in the soil. Manage these correctly and trees will grow quickly following planting. Three of the most common causes of poor plant establishment or tree death are planting too deep, under watering, and over watering. If appropriate trees are planted at the right depth and they are irrigated properly, the planting has a good chance of success. As simple as this appears to be, problems often arise that lead to poor establishment or plant failure.

Ten steps to proper tree planting

1. Look up for wires and lights
2. Dig shallow and wide hole
3. Find the topmost root and treat root defects
4. Carefully place tree in hole
5. Position top root 1-2 inches above landscape soil
6. Straighten tree
7. Remove synthetic materials
8. Add and firm backfill soil
9. Add mulch
10. Stake and prune if needed

The Urban Forest Hurricane Recovery Program

http://treesandhurricanes.ifas.ufl.edu
Ten Steps to Planting Trees

Step 1

Look up

If there is a wire, security light, or building nearby that could interfere with proper development of the tree canopy as it grows, plant elsewhere or plant a tree that has a small canopy or a narrow canopy at maturity. Although small trees remain below the wires, they often have a short life span. If large trees are planted too close to wires, it increases costs of providing electrical service and reduces reliability. Consider moving wires or lights so a larger tree can be planted.

Step 2

Dig shallow and wide planting hole

To estimate the depth of the planting hole, measure the distance between the point where the topmost root emerges from the trunk and the bottom of the root ball. Then dig a hole slightly shallower than this distance (Figure 1). No more than about 2 or 3 inches of the root ball needs to be above the soil unless the site is poorly drained. If the soil is poorly drained, plant even higher. If the hole was inadvertently dug too deep, add soil to the bottom of the hole and compact it with your foot. If the hole fills with water as you dig it, position the bottom of the root ball above the water and mound soil to cover the sides of the ball.

Make the hole at least 1.5 times the diameter of the root ball (Figure 2). Wider holes should be used for compacted soil and wet sites. This helps roots from becoming deformed by the edge of the hole in compacted or clayey soils. Breaking up compacted soil in a large area (out to the drip line of the tree) around the tree provides the newly emerging roots room to expand into loose soil. This will hasten root growth translating into quicker establishment. Do not underestimate the positive effect this technique has on tree establishment in hard soils.

Figure 1

In well-drained soils, the planting hole depth should be 90–95% the distance between the topmost root and the bottom of the root ball.

Figure 2

The planting hole should be at least 1.5 times the diameter of the root ball, but a wider hole is better.
Step 3

Find the topmost root and treat defects

Choose a tree whose topmost root emerges from the trunk visibly, at or slightly above the surface. Not all root balls come from the nursery like that. In the highest-quality root balls, the point where the topmost root emerges from the trunk should be within 2 inches of the surface (Figure 3). The topmost roots and root flare (if present) in poorer quality root balls are buried down inside the root ball. Trees whose topmost roots are too deep in their root balls have less of a root system than trees whose topmost roots emerge near the surface. If you cannot see the topmost root, remove excess soil to expose it before you plant the tree. As the distance between the topmost root and the soil surface increases, the percentage of the root system harvested from the field nursery decreases.

To check for root defects such as circling and kinked roots in containers or field-grown trees, you might have to displace or remove soil and media from the top of the root ball, especially near the trunk. Cut or spread out any circling or kinked roots growing up above the topmost root. This will prevent these roots from strangling the trunk in the future.

Circling roots can be found on container-grown trees, field-grown (balled-in-burlap, or B&B) trees, or bare-root trees. Eliminate this defect by cutting roots at planting. This can be accomplished on B&B or container trees with pruners before trees are placed in the hole (Figure 4) or by slicing the edge of a container root ball from top to bottom with a balling spade after trees are in the hole. Cut roots that are kinked or any that circle the top of the root ball. If these cut roots are large (larger than about 1/3 trunk diameter), the tree might shock and could die. Be sure to look for roots that circled when trees were in a smaller container. These are difficult to cut because they are hidden in the interior of the ball. Buy from a quality grower to avoid this.

Circling roots do not always result in trunk girdling, however trees may develop a severe lean after a wind storm due to an issue with circling roots (Figure 5). Because few, if any, branch roots develop on the outside of a circling root there may be no support on that side of the...
tree. Cut the circling root at the point before it begins to circle. This will prevent new roots that emerge from the cut from circling the trunk again.

Step 4

Carefully place tree in planting hole

To avoid damage when setting the tree in the hole, lift the tree with straps or rope around the root ball. Do not lift it by the trunk. Special strapping mechanisms need to be constructed to carefully lift trees out of large containers and to handle large B&B trees to prevent bark damage on the trunk and branches. B&B trees should be handled by the root ball. Remove any plastic wrapped around the root ball before planting. If you measure carefully, the root ball will not have to be removed from the planting hole to adjust hole depth. Trees planted from containers may settle more than B&B trees, so you may want to position these an inch or two higher. Larger containers appear to settle more than smaller containers.

Step 5

Position the topmost root 1 to 3 inches above the landscape soil

Position the topmost root about even with or slightly above (about 2 inches above) the top of the landscape soil in well-drained soil. Plant even higher in soil that drains poorly.

Most horticulturists agree that it is better to plant the tree too high than to plant it too deep. Lay a shovel across the top of the planting hole to check root ball depth. If the tree is too deep in the hole, remove it from the hole and firmly pack soil in the bottom of the hole to raise the root ball. If it is only a little bit too deep, tip the ball to one side and slide some soil under it; then tip it back the other way and slide some more soil under the ball. Continue this until it is set at the appropriate depth. Once it is at the appropriate depth, place a small amount of soil around the root ball to stabilize it. A large body of research and experience shows that soil amendments are usually of no benefit. The soil removed from the hole makes the best backfill unless the soil is poor or contaminated.

Step 6

Straighten the tree in the hole

Before you begin backfilling have someone view the tree from two directions perpendicular to each other to confirm the tree is straight. Fill in with some more backfill soil to secure the tree in the upright position.

Once you add large amounts of backfill, it is difficult to reposition the tree.

Step 7

Remove synthetic materials

String, rope, synthetic burlap, strapping, plastic, and other materials that will not decompose in the soil must be removed at planting. Synthetic burlap melts into plastic goo, while real burlap flames and turns to ash when lit. If burlap is synthetic, be sure to remove all of it with a pruner, knife or other sharp blade. Roots grow through artificial burlap with little difficulty, but as the roots attempt to expand in diameter, they become girdled or strangled (Figure 6). Artificial and synthetic burlap is not commonly used in the southeastern U.S.

Many contractors leave the treated burlap commonly used by field growers pinned in place. This seems to be all right as long as the topmost root is not too deep and there are no root defects to treat. However, removing burlap from the top of the ball allows you to check for root defects including deep planting in the root ball and circling roots.

Baskets made from wire are typically used to help keep a root ball intact during shipping and handling. Some people attempt to remove some or all of the wire from wire baskets before backfilling; this may void any guarantee that came with the tree. There is no research documenting the detrimental effects of wire baskets on trees. If you decide to remove wire, do so after the tree is positioned in the hole. Stake the tree to stabilize it.

Figure 6

This synthetic burlap is still intact 10 years after planting. Each of these roots is very easy to break off at the burlap because there is very little wood that developed through the synthetic material. Roots grow easily through natural treated burlap so this does not need to be removed from the sides of the ball. Never use synthetic burlap.
Step 8

Add backfill and firm the backfill soil

Slice a shovel down into the backfill 20 to 30 times all around the tree as you add backfill soil. Attempt to break up large soil clumps as much as possible. Do not pack the backfill, instead step firmly on the backfill soil to help stabilize the root ball (Figure 7). When the planting hole is filled with soil, the root ball should remain 1 inch (small trees) to 3 inches (larger trees) above the backfill soil. Do not over-pack the loosened soil, especially when soil is wet.

Add 10 to 20 gallons of water to the root ball and backfill. Fill in any holes or depressions with additional backfill soil. Do not firmly pack backfill soil in an attempt to eliminate air pockets because this could cause too much soil compaction, especially in clay soil. The water infiltrating the backfill soil will eliminate many of the large air pockets. The presence of small air pockets could even be of benefit because they could allow more air to reach the roots.

Step 9

Cover sides of the root ball with mulch

Provide a 3-inch-deep layer of mulch around the tree (Figure 8). Mulches reduce soil temperature fluctuations, prevent packing andcrusting, conserve moisture, help control weeds, add organic matter to the soil, and improve the appearance of the landscape. Generally, a 2 to 3 foot diameter circle of mulch per inch of tree trunk caliper will give adequate mulch area for newly planted trees (Figure 9). A thin (1 inch) layer of mulch can be placed over the root ball for aesthetic reasons, but deep layers on the root ball can prevent adequate irrigation and rain from reaching roots. Keep turf as far away from the trunk as possible with mulch or herbicides to aid tree establishment, to prevent mower damage to the trunk, and to prevent soil compaction.

Common mulch materials include leaves, pine needles, compost, bark, and wood chips. Peat and cypress chips should not be used since once dry they are very difficult to wet and may restrict water movement into the soil. Inorganic materials such as gravel and crushed stone have been used. They provide no organic matter, are...
difficult to keep tidy and clean, and often work their way into the soil.

If turf grass grows up to the trunk, trees often perform poorly. Turf and weeds rob trees of moisture and nutrients and some produce chemicals that inhibit tree growth. Lawn mowing equipment often damages the trunk when mowing turf close to the trunk. This is a good way to kill trees.

Never pile mulch in a volcano-like manner against the trunk (Figure 10). This can rot the trunk, cut off oxygen to roots, keep vital irrigation and rain water out, and can keep roots too wet in poorly drained soils. Roots grow up into this pile of mulch because it is very well aerated and moist. Stem-girdling roots form from this on some trees and cause stress and decline.

If you believe a berm is needed to hold water from a high volume delivery system such as a hose or water truck, use mulch, not soil to construct a berm at the edge of the root ball. If soil is used to construct the berm, it can wash over the root ball and bury the roots too deeply. Plastic edging has also been used to keep water in so it all percolates through the root ball. The berm will ensure that water penetrates to where it is needed most, i.e. in the root ball. If soil is sandy or very well drained, a berm may not be needed. The berm should be removed once the tree is established. Do not push the berm onto the root ball and trunk since this can cause root defects.

Step 10

Stake and prune if needed

Stake the tree if necessary to hold the root ball firmly in the soil. If the root ball moves in the wind, emerging roots could break and trees will establish slowly. Staking to hold a thin, weak trunk upright should not be necessary on trees with a trunk diameter more than about 1.5 inches. If large trees require staking to prevent the trunk from bending, it probably indicates a lesser quality tree. Smaller trees might require staking until enough trunk strength develops.

Figure 11 shows traditional staking systems. The system shown on top consists of three short stakes (2 shown) attached to the trunk with straps. The center system consists of three short

Figure 10

Never mulch in this manner. Deep mulch on the root ball and against the trunk leads to poor establishment, root defects, stress, decline, and in some cases death. Some rodents, such as voles, can also cause damage to the trunk easily if mulch is piled there. Trees could decline from this problem.

Figure 11

Traditional staking systems require removal within one year after planting. They do not appear as effective as newer designs.
stake (2 shown) driven into soil in a traditional manner attached to the trunk with stretchable material. The system shown on bottom consists of two or three two-inch by two-inch wood stakes driven through the backfill soil. Recent research shows that stakes driven straight into the ground, not at an angle as shown in Figures 12 (left and center), are most secure in the soil. All three traditional systems require removal within about one year after planting. Figure 12 shows a stiff staking system. These hold trees upright in strong winds, but can restrict growth below the securing point if left on too long.

Root stabilization systems do not need to be removed because they decay within a few years (Figure 13). One system consists of one horizontal two-by-two screwed to two vertical, four-foot-long two-by-twos against the side of the root ball (Figure 13; top and center). Our research shows that these root stabilization systems work very well and are better able to hold trees against strong winds than traditional systems shown in Figure 11.

Prune to remove or reduce stems that compete with the main leader if no pruning is planned in the next couple years. Wait until later if there is pruning planned in the next two years. Broken branches should also be pruned, but do not over-prune to compensate for root loss.

Establishing Trees

Irrigation and Mulch

The establishment period is the time it takes for a tree to regenerate enough roots to stay alive without irrigation. During this period, shoots and trunk grow slower than they did before transplanting. When their growth rates become more or less consistent from one year to the next, the tree is considered established.

In moist climates, by the end of the establishment period a tree has regenerated enough roots to stay alive without supplemental irrigation in a landscape where roots can expand uninhibited by urban structures. In the drier parts of central and western US, the turf and landscape irrigation system may have to supplement rainfall to provide enough water for survival after establishment. Establishment rate is determined by a number of factors (Table 1).
Table 1. Establishment rate is determined by many factors.

<table>
<thead>
<tr>
<th>ENCOURAGES GROWTH</th>
<th>LIMITS GROWTH</th>
<th>LITTLE OR NO EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>loose soil</td>
<td>compacted soil</td>
<td>peat or organic matter addition as backfill</td>
</tr>
<tr>
<td>proper irrigation management</td>
<td>little or no irrigation</td>
<td>root stimulant products</td>
</tr>
<tr>
<td>mulch 8 feet in diameter or more around planting hole</td>
<td>grass and weeds close to trunk</td>
<td>fertilizing at planting</td>
</tr>
<tr>
<td>root flare slightly above soil surface</td>
<td>planting too deeply</td>
<td>adding spores of mycorrhizae*</td>
</tr>
<tr>
<td>leaving top of tree intact</td>
<td>pruning at planting</td>
<td>water absorbing gels</td>
</tr>
</tbody>
</table>

* Can enhance growth on seedlings under certain circumstances, but does little for landscape-sized trees.

During establishment, trees should be irrigated 2-3 times weekly with 2 gallons per inch trunk caliper. All this water should be applied only to the top of the root ball. Daily irrigation will keep trees healthier. Research shows that frequency of irrigation has a greater effect than irrigation volume (Table 2). This means that you can not make up for lack of frequency by adding large volumes less frequently. Daily irrigation may or may not be necessary when planting in winter, cool climates, or during rainy weather. Irrigation frequency can be reduced to 2-3 times each week instead. Never apply irrigation if the soil is saturated.

Table 2. Irrigation schedules depend on size of nursery stock and desired objective*.

<table>
<thead>
<tr>
<th>SIZE OF NURSERY STOCK</th>
<th>IRIGATION SCHEDULE FOR VIGOR</th>
<th>IRIGATION SCHEDULE FOR SURVIVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2 inch caliper</td>
<td>Daily: 2 weeks Every other day: 2 months Weekly: until established</td>
<td>Twice weekly for 2-3 months</td>
</tr>
<tr>
<td>2-4 inch caliper</td>
<td>Daily: 1 month Every other day: 3 months Weekly: until established</td>
<td>Twice weekly for 3-4 months</td>
</tr>
<tr>
<td>greater than 4 inch caliper</td>
<td>Daily: 6 weeks Every other day: 5 months Weekly: until established</td>
<td>Twice weekly for 4-5 months</td>
</tr>
</tbody>
</table>

* Establishment takes approximately 3 months (hardiness zones 10-11) to 4 months (hardiness zones 8-9) per inch trunk caliper.

During establishment mulch should be maintained to control weeds and protect the trunk. Weeds can also be controlled with herbicide. Increase mulch diameter over time to keep pace with root growth for best establishment. Roots normally grow 3 to 10 feet in length the first year after planting. Soil compaction should also be minimized during establishment to allow adequate root expansion. This is best accomplished with wide mulch areas. If staking systems have not been removed, remove them about one year after planting to prevent trunk girdling but keep mulch off the root ball (Figure 14).

Figure 14
Keep mulch off the root ball to discourage formation of stem girdling roots. The trunk flare should be visible as in this photograph.

Root Management

Trees with roots that are touching or circling the trunk (Figure 15, bottom) instead of growing straight away (Figure 15, top) stress the tree by reducing or eliminating vascular flow where the root contacts the trunk. Stress increases with time and can lead to trunk or root decay, or a decline in health.

This can be corrected by removing the root defect, but root removal also stresses the tree. But the stress from root removal will only last for a relatively short period and will decrease with time as the tree recovers from lose of roots. If the cambium has not been permanently damaged where the root touched the trunk then normal vascular flow can return. Irrigation management during this recovery time is likely to reduce stress and help the tree recover in dry soil. You must judge whether eliminating stress by removing the defect outweighs the temporary increase in stress brought on by root removal. Typically, removing the defect is best for the tree.

Certain species such a maple, magnolia, holly, mahogany, gumbo limbo, and tabebuia appear especially sensitive to this defect; however, any tree can be affected by circling or stem girdling roots. Some arborists routinely remove roots that might be one-quarter of the...
trunk diameter, or even larger. Cut roots at the point where they begin to circle so new roots that grow from the cut will point more-or-less away from the trunk.

If the defective root circles more than half the trunk diameter and is embedded into the trunk (Figure 16) give careful consideration to whether removal will help the tree. Some defects are so severe that removal may not be possible; or the defect might have already killed the cambium on that side of the tree. Check by carefully penetrating the trunk tissue just above the root defect to see if the tissue is green or brown. If you find no live green tissue on a large portion of the circumference of the trunk then that portion of the trunk is dead and treatment may be futile.

Figure 15

(Top) Roots should grow straight from the trunk for the best health and stability. (Bottom) This trunk will become girdled causing decline and tree death if this root is not removed. Cut it just behind the point where it begins to circle the trunk. Following pruning, the remaining root segment should be straight out from the trunk.

Figure 16

A severe stem girdling root such as this one will be difficult to remove. Portions of it can be cut without removing it.

Additional Resources

Landscape Plants
http://hort.ifas.ufl.edu/woody/planting.html
Introduction

Tree selection does not end with choosing the appropriate species or cultivar for the planting site. Suitable nursery stock must be chosen based on planting site conditions and intended after-care, which should dictate maximum tree size at planting, root ball characteristics, appropriate tree production method, and tree structure.

Nursery stock must be inspected carefully to pick high quality trees. Pay particular attention to roots. Trees of poor quality may be inexpensive, but might perform poorly in the landscape. Quality factors to evaluate include root ball defects, size, shape, and structure of the canopy, nursery planting depth, presence of included bark, trunk form and branch arrangement, pruning cuts, presence of pests and disease, leaf color, top die-back, clear trunk length, and canopy uniformity.

Important considerations for selection

There are advantages to selecting good quality nursery trees. Good quality trees are more likely to survive post-planting, establish more quickly, and live longer in the landscape. Choosing a good quality tree also can reduce the likelihood of failure from structural defects during a hurricane. Defects in the trunk and branch structure are easier to correct than defects in the root system. This makes it very important to choose trees from a grower with a demonstrated capacity to produce good root systems. Smart buyers evaluate root systems thoroughly.
Production method

To ensure greater transplant survival, choose trees grown in the nursery production system best suited for the characteristics of the planting site. Under ideal conditions, i.e. well-drained and irrigated soil, production methods perform about equally well. However, if irrigation capabilities will be limited, the production method best suited for the site is an important consideration.

There are three main types of production methods: container, field-grown (baled-in-burlap or B&B), and bare root (Figure 1). Container trees are grown above ground in plastic, metal, wood, or fabric; pot-in-pot in the ground; or in fabric containers in the ground. B&B trees are grown in field soil, then dug with a tree spade and secured in wire and burlap. Bare-root trees are rarely marketed in the southeastern U.S. including Florida. Bare-root deciduous trees are dug from field soil and receive no media covering on the roots; they are usually available only when dormant and in a limited size range.

Table 1 compares production methods with typical root ball weights and staking requirements. For example, trees produced in containers typically have a light root ball and frequently require staking, whereas B&B trees have heavy root balls, so they require staking less frequently.

Trees perform best when irrigated frequently after planting. If irrigation can be applied to the root ball twice weekly or more often, the production method may have little impact on tree survival. For landscapes where irrigation is less frequent, much of the research shows that it is best to install B&B trees that were root pruned during field production and dug at least several weeks before planting to the landscape (Table 2). These trees are referred to as “hardened off” (Figure 1, bottom) and frequently have new roots growing through the burlap. Root pruning live oak and some other trees during production provides a product that is slightly smaller, has a denser, more fibrous root system, has a more uniform root system (Figure 2), and transplants more successfully. Oaks grown in certain soil types may need less frequent root pruning than in other soil types, although this has not been thoroughly documented.

Certain trees that are dug from sandy, well-drained soil without prior root pruning suffer more shock in the landscape, especially when not sufficiently watered. Some trees such as crape myrtles, maples, birches, hollies, and others are not routinely root pruned like oaks. In many instances, these seem to perform fine without root pruning due to their naturally dense root system.

Table 1. Choose among tree production methods based on weight and staking capabilities.

<table>
<thead>
<tr>
<th>PRODUCTION METHOD</th>
<th>ROOT BALL WEIGHT</th>
<th>NEED FOR STAKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container above ground or pot-in-pot</td>
<td>light</td>
<td>frequently</td>
</tr>
<tr>
<td>Fabric containers in ground</td>
<td>light</td>
<td>usually</td>
</tr>
<tr>
<td>B&B* not root pruned</td>
<td>heavy</td>
<td>sometimes</td>
</tr>
<tr>
<td>B&B* root pruned</td>
<td>heavy</td>
<td>sometimes</td>
</tr>
<tr>
<td>Bare root</td>
<td>very light</td>
<td>usually</td>
</tr>
</tbody>
</table>

*B&B = field grown
Table 2. Live oak survival in the landscape can depend on the production method and irrigation practices after planting.

<table>
<thead>
<tr>
<th>PRODUCTION METHOD</th>
<th>SURVIVAL WITH FREQUENT IRRIGATION AFTER PLANTING</th>
<th>SURVIVAL WITH INFREQUENT IRRIGATION AFTER PLANTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container above ground or pot-in-pot</td>
<td>very good to excellent</td>
<td>fair</td>
</tr>
<tr>
<td>Fabric containers in ground</td>
<td>very good to excellent</td>
<td>poor to fair</td>
</tr>
<tr>
<td>B&B not root pruned</td>
<td>fair to good</td>
<td>poor to fair</td>
</tr>
<tr>
<td>B&B root pruned</td>
<td>very good to excellent</td>
<td>good</td>
</tr>
<tr>
<td>Bare root</td>
<td>very good to excellent</td>
<td>good</td>
</tr>
</tbody>
</table>

1 Research performed on live oak in sandy, well-drained soil. Other species and trees grown in different soil types may perform differently.

Maximum size at planting

The maximum size nursery stock suited for a particular planting site should be determined by the irrigation capabilities after planting, as well as the climate and site drainage. Smaller nursery stock should be used where irrigation can not be provided for the recommended period of time. Nursery trees larger than 2 inch caliper can be poorly suited for wet sites because roots in the bottom of the root ball can become submerged in water. This may stress the trees by killing the deeper roots in the root ball, which can prevent the tree from growing for several years after planting. Smaller nursery stock is the better option for poorly drained sites because they have a shallow root ball. If large trees are necessary, then trees with shallow root balls (trees grown in low-profile containers, Figure 3) should be selected, or trees can be planted 10 to 30% above grade and soil gently mounded to cover sides of the root ball. Smaller trees can be better suited than larger trees to compete with weeds for limited water availability, especially when weeds are not controlled with mulch or chemical applications.
Smaller nursery stock (Figure 4, top) has a shorter establishment period because roots come into balance with the top in the first 6-12 months after planting. Large nursery stock such as the 6-inch-caliper tree pictured in Figure 4 (bottom) requires much more time to become established. This makes it susceptible to dying from drought for a longer period after planting. It can take up to three years for a 6-inch-caliper tree to become established. Unless plenty of water can be supplied, it may be best to plant smaller nursery stock.

Root ball dimensions

The shape and depth of the root ball may be an important consideration for poorly drained soils. Root balls of any shape perform equally well in well-drained soil. Tall root balls help keep deeper roots moist. Wide and shallow root balls are better suited for planting in poorly-drained and compacted sites but dry more quickly on well-drained sites (Figure 3). Again, irrigation and site drainage are important considerations. A tall root ball may be more appropriate if irrigation will be infrequent or the site soil drains quickly because the deep roots stay moist longer.

Root collar location

The area where the topmost roots meet the trunk is referred to as the root collar or root flare. If it is buried too deeply in the root ball, the tree could decline over time due to lack of oxygen for the root system. Trees can also decline from roots growing over the flare and forming stem-girdling roots. If the trunk emerges from the soil like a telephone pole, without any swelling or root flare, then soil should be excavated away from the trunk base to determine where the root flare is located (Figure 5). Remove soil or media around the base of the trunk until you locate the root flare or the area where the topmost roots emerge from the trunk. The topmost major root should be no deeper than one inch from the surface of the root ball (Figure 5, bottom).

Do not purchase trees that were planted too deeply (Figure 6). If you have already purchased one, soil, media, and roots growing above the original topmost root should be mostly removed prior to planting.
Root defects

Root ball defects can occur on any tree regardless of the production method. Once formed, these severe defects close to the trunk are time consuming or impossible to correct and can reduce the capacity of landscape plants to survive and grow. These problems are difficult to spot because they can be buried inside the root ball (Figure 7). Types of root defects include circling roots, kinked roots, stem girdling roots, and root-bound trees.

Trees with severe circling roots should not be planted (Figure 7). Roots circling close to the trunk can eventually slow growth and girdle the trunk. Circling roots at the top of the root ball are especially troublesome. Few roots grow from the outside edges of circling roots, making the tree unstable and more likely to blow down during hurricane-force or even lesser winds.

Kinked roots are roots that have been deflected and turned back on themselves almost 180 degrees. They occur mostly when roots are folded into a propagation tray or container at the liner stage. Water and sugars have a difficult time passing this severe turn in the root, and kinked roots do not provide the mechanical support straight roots do. Kinks in small roots are much less of a concern than kinks in a large root (Figure 8).

Stem-girdling roots are formed when new roots grow perpendicular to a cut root, or when the tree is growing in a container too long. As the trunk increases in diameter, these roots may meet the trunk and begin to strangle it, hence the term stem-girdling roots. The trunk may become severely indented where the root was girdling it; this can cause trunk and root decay, which reduces the tree’s ability to stand up, especially in a hurricane (Figure 9).

Root-bound trees have many roots circling around the outside of the root ball (Figure 10), which causes a physical barrier, sometimes preventing the tree from spreading roots into the landscape soil after planting. All these roots should be cut when trees are potted to a larger container and when planting to the landscape.
A quick test can be performed to check root quality. When you push the trunk back and forth, the trunk on a good quality tree will bend along its length and will be firm in the soil or medium. The trunk on a tree with a defective root system will often pivot at its base and will lean over quite a way before it bends (often caused by circling roots when a tree was in a smaller container) (Figure 11). While passing this test does not eliminate trees with root defects, it is a good way to determine if there are severe defects close to the trunk.

Root ball caliper:

height relationship

The American National Standards Institute and Florida Grades and Standards for Nursery Stock recommend minimum root ball sizes for nursery-grown trees based on trunk diameter or tree height, and the different kinds of containers they were grown in (Table 3). For instance, a field-grown tree with a trunk caliper of 3 inches should have a minimum 32-inch-diameter root ball and should be between 12 and 16 feet tall. Adhering to these standards helps trees to establish successfully in the landscape.

<table>
<thead>
<tr>
<th>TRUNK CALIPER (INCHES)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN. BALL DIAMETER ON FIELD-GROWN SHADE TREES</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>42</td>
<td>54</td>
</tr>
<tr>
<td>MIN. BALL DIAMETER ON FABRIC-CONTAINER-GROWN TREES</td>
<td>12</td>
<td>18</td>
<td>20</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>MIN. CONTAINER SIZE (GALLONS)</td>
<td>5</td>
<td>20</td>
<td>45</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>MIN. TREE HEIGHT ON STANDARD TREES</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>--</td>
</tr>
<tr>
<td>MAX. TREE HEIGHT</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>--</td>
</tr>
</tbody>
</table>

1 Caliper is trunk diameter 6 inches from soil surface unless diameter is greater than 4 inches, in which case it is measured at 12 inches from soil surface.
Trunk form and branch structure

Choosing a nursery tree with good structure can postpone future pruning and maintenance. Trees with poor structure could require more pruning cuts, and a greater portion of the canopy will have to be removed to correct defects.

Shade trees of lesser quality have two or more trunks. Best quality shade trees have one dominant trunk (Figure 12). Multiple leaders represent weakness and can cause the tree to split apart as it grows. Some smaller ornamental trees such as crapemyrtle, ligustrum, wax myrtle, and others naturally have multiple trunks and this does not have to be corrected. Major branches and trunks should not touch, and branches should be less than \(\frac{1}{3} \) trunk diameter (Figure 13).

Other factors influencing tree quality

Though the qualities of the root ball and tree structure are the main considerations, there are some other important factors. Tree wrap should be removed so that the trunk can be inspected for hidden wounds. The trunk can be rewrapped after inspection to prevent wounding during shipping. Trees with large trunk injuries should be avoided.

Canopy uniformity is less important than trunk form and branch arrangement. However, a uniform canopy represents a detail accomplished by attentive growers. Trees with an irregular canopy, one dominant trunk, and good branch arrangement are far better than trees with a uniform canopy and a double trunk with included bark (Figure 14). The canopy on well-structured trees will fill in as the tree grows. Canopy fullness depends on the tree species or cultivar in question. Thin canopies do not necessarily mean that the trees are poor quality, diseased, or infested with insects, since species and cultivars vary greatly in this characteristic. Some trees, such as trumpet tree, Shumard oak and gumbo limbo, are naturally thin when they are young.

Evaluate pruning cuts to determine the quality of the nursery stock. Properly made pruning
cuts indicate that the nursery has high pruning standards and is capable of growing high-quality trees (Figure 15). Improper cuts indicate a poor understanding of tree care and biology.

Trees propagated from plants in the same area as the planting site are likely to be perfectly adapted to the climactic conditions of the site; such trees are rarely available. Tree cultivars have been developed and varieties have been selected for tolerance of cold temperatures, high soil pH, drought, pests and diseases, etc. that are well suited to a wide range of planting sites.

Other concerns are foliage color and staking. Foliage can be discolored for a number of reasons. Discoloration can be a result of nutrient deficiencies. Stakes should be removed from trees before purchasing to assure that the trees can stand unassisted if caliper is more than 1.5 inches.

Figure 16 shows good quality field and container trees. Trees have one dominant trunk, the branches are not crossing, and the canopies are full and uniform. Trees of good quality are more likely to withstand strong winds in the event of a hurricane or tropical storm.

For more information, visit:
American National Standards Institute (ANSI)
http://www.ansi.org/
Florida Grades and Standards
http://www.doacs.state.fl.us/pi/pubs.html
Introduction

Researchers who visited post-hurricane sites found that many incidents of tree failure could have been prevented with appropriate design and management. Many trees that grow to a large size had been placed too close to curbs, sidewalks, foundations, and pavement. Roots on mature trees had been deflected, decayed or been cut close to the trunk. These conditions resulted in trees toppling in high winds.

A strong root system is one of the most critical factors that allow trees to withstand hurricane-force winds in urban landscapes, where space for root growth is often limited. Limited rooting space presents a challenge to creating sustainable landscapes. Strategies for developing strong root systems on newly planted trees and preserving the roots of existing trees will be discussed in this document. Other elements of wind-resistant design such as tree grouping and species selection will also be introduced.

Research shows that the more rooting space trees have, the less likely they are to fall. Root systems that grow without being deflected by curbs, sidewalks, pavement and other urban soil structures have a chance to develop a strong supporting base for the tree. Main roots close to the trunk should be straight. If these roots are deflected or cut during construction, then risk of failure increases significantly. Trees growing in groups have a higher rate of survival than trees that stand individually. Groups of trees also divert wind so they offer more protection for nearby buildings compared to isolated trees. See Chapter 5—Wind and Trees: Lessons Learned from Hurricanes for more details on the design factors that have affected tree failure in past hurricanes, based on the research and observations of experienced professionals.

Good design means designing the underground soil space to support trees and selecting the right tree. However, many landscapes are already established. So it is important to first address design solutions for existing situations where trees are in conflict with the landscape.

Existing Design Situations

Every day people pass by trees that are growing in conflict with the existing landscape: the parking lot of the grocery store, the sidewalks downtown, the front yards of their homes, and so on. In each of these situations, when trees have a limited space to grow, pavement begins to interfere with root expansion 10 to 20 years after planting (Figure 1). The problem can begin as a crack in the surface of the pavement, which attracts growing roots and eventually results in an entire section being lifted. This can present a trip hazard to pedestrians passing by. Large maturing trees grown in small spaces will do one of two things: grow and disturb the hardscape, or decline and eventually
die. The latter outcome is wasteful and impractical because the cost of planting a tree in an urban area can range from five hundred to thousands of dollars. Tree removal and replanting is yet another expense, and still the design objective is not fulfilled. In the former scenario, in which the tree continues to grow in conflict with the hardscape, often the large anchoring roots are cut when the hardscape is repaired (Figure 2). Many urban tree managers have learned from experience that cutting roots is a poor decision because it makes the tree unstable. Trees with cut roots have fallen over and damaged homes and vehicles. They have even killed people. It should be clear that for the sake of wind resistance, cutting or damaging the root system that anchors the tree is not an option! Trees that lack their main support roots are hazards in the landscape.

When root pruning is necessary, the general guideline is to preserve all roots within an area about five times the trunk diameter. For example, if the trunk diameter is two feet, then do not prune roots within ten feet of the trunk. Although this will not guarantee that tree will remain erect, it is better than cutting closer to the trunk.

Design solutions for situations where roots are in conflict with the landscape

Rather than cutting the roots, there are many different techniques that have been used that do not interfere with the root system of the tree. Several of these are discussed below. Look for more detailed information on our Web site: http://treesandhurricanes.ifas.ufl.edu/.

Install different surface material

Materials other than concrete can be used as a wearing surface for sidewalks. Some examples are crushed granite, gravel, wood decking, brick-in-sand and asphalt. Porous pavers and porous asphalt have been used for parking lots with success. A potential benefit to these alternate surface materials is that they provide some aeration to the soil beneath, versus concrete, which traps moisture and can encourage roots to grow directly under and break the pavement. Most of these materials are flexible, so they are less likely to crack from root growth than a rigid surface like concrete. Repairing these alternate surface materials can also be less expensive than traditional hard surfaces.

Stone dust

Surface materials like gravel, limestone, or stone dust allow continued root growth and expansion (Figure 3). The surface can be easily repaired as roots continue to expand in diameter. Crushed rock is inexpensive and easy to install, and the surface is porous. It is best used on fairly flat surfaces because rain can cause erosion on sloping ground. The use of brick pavers, shown in the picture, provides a route for pedestrians walking from the parking lot to the other side of the street. Displaced stones will need to be replaced occasionally, and may be a nuisance when using equipment such as a leaf blower (Gibbons, 1999).
Porous pavers

This solution is most commonly used for paved areas such as parking lots (Figure 4). Porous surfaces are a good idea for areas prone to flooding because they allow some water to permeate for more even distribution, and can help reduce runoff problems. This is an especially important design detail for Florida and the Gulf coast, which is prone to heavy tropical rains.

Soil should be added around the roots to prepare a base for the pavers. Coarse sand works nicely as a sub-base for the porous pavers because it compacts, yet allows enough air space between particles for air movement. Be sure that the soil grade is not lowered during the construction process, because this will damage roots.

Fill and re-pour sidewalk

Like many of the other solutions, this can be a short-term solution that often requires repair in the future. Perhaps using an alternate sub-base material like gravel or rubber chips (instead of soil) and then re-pouring will prevent roots from growing directly under the pavement and lifting it. Reinforcing the concrete with rebar can extend the life of the sidewalk or driveway by forcing the expanding roots to lift the entire slab. This can prevent cracking because the root can deform and become flattened under the slab instead of lifting it.

Bridging

Surface materials such as interlocking concrete pavers, wood decking, rubber sidewalks, or metal (Figure 6) can be used to bridge over roots.

Reroute

Where possible, redirecting the sidewalk is a great option if there is space (Figure 7). This solution is used for many trees in urban areas. Be sure to put a mechanism in place that prevents contractors from damaging the main support roots during sidewalk repair.

New Design/Construction: Designing the Right Place

A good design should provide enough soil space to support root growth of the tree. The volume of soil required depends on the expected size of the tree. Unfortunately, many trees are squeezed into soil spaces that are large enough for the root ball at planting but way too small for future root growth. This is a main reason for poor growth and instability of trees in hurricanes. Current design practices will have to change significantly in order to give trees the appropriate amount of soil space. A typical design specification can call for a volume of 200 cubic feet of soil for trees, whereas 2,000 to 3,000 cubic feet would be an ideal amount. This is a drastic difference! The table and design solutions presented here attempt to strike a compromise between these two extremes.
Soil requirements

For situations where the planting area is surrounded by paved surfaces, Table 1 provides guidelines for the minimum amount of soil to provide based on tree size at maturity. There are two components to soil space: 1) the total soil volume needed to sustain a tree for a reasonable period of time, and 2) the open soil area needed immediately surrounding the trunk to accommodate trunk flare growth. Open soil space is soil that is not covered by a solid hard surface such as a sidewalk, pavement, or a building.

Table 1. Soil requirements for trees based on their size at maturity.

<table>
<thead>
<tr>
<th>TREE SIZE AT MATURITY</th>
<th>TOTAL SOIL AREA*</th>
<th>DISTANCE FROM PAVED SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMALL</td>
<td>10 ft x 10 ft</td>
<td>2 ft</td>
</tr>
<tr>
<td>Height: shorter than 30 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIUM</td>
<td>20 ft x 20 ft</td>
<td>6 ft</td>
</tr>
<tr>
<td>Height or spread: lesser than 50 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARGE</td>
<td>30 ft x 30 ft</td>
<td>10 ft</td>
</tr>
<tr>
<td>Height or spread: greater than 50 ft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Measurements for when rootable soil depth is 3 feet or greater. For soil less than 3 feet deep, smaller maturing trees are recommended.

The soil guidelines in Table 1 are minimum recommendations intended for good quality, well-drained soils. When the soil has limitations such as compaction, high water table, poor drainage, etc., either provide more space, or choose small maturing trees. Although these recommendations are significantly different from a typical specification, much more rooting space is necessary for trees to be more stable in the landscape and to be appropriately considered a wind resistant design.

Design solutions for urban situations where space is limited

There are many options for increasing soil area for trees in downtown landscapes, malls, and other urban situations where pavement is in very close proximity to the trunk. This section will list options for increasing soil area in this type of environment, or making better use of existing site soil.

Step 1—Plant trees in the open space available.

Study Figure 8 carefully—notice the large space provided for turf. Compare this to the limited size of the sidewalk cutouts that the trees are planted in. If planted in the open lawn, the trees have a better chance to become large, to provide shade for people using the space, and reduce cooling costs for nearby buildings. Instead, they will have a shorter lifespan due to the limited growing space. The tree grates shown in Figure 8 cause more harm than good. Don’t use them, pavers are a better option.
We are accustomed to seeing trees planted in a thin strip of lawn between the sidewalk and street (Figure 9). Sidewalks often become displaced and broken as roots expand in diameter. Not only is damage to the sidewalk from root expansion expensive to repair, but trees would be more stable if they were planted in the open space on the other side of the walk. This is a simple solution that can reduce incidences of trees blowing over. When fewer curbs surround the tree, the tree grows faster and has a more balanced root system. The tree becomes more stable because the root flare is able to fully develop without obstruction from the sidewalk and curb.

Step 2—If there is no open space, provide more rootable soil.

Sidewalks in high traffic, downtown areas must be designed to support emergency vehicle weight. Hence, the soil beneath the sidewalk is compacted to prevent settlement and cracking of the sidewalk. However, trees thrive best in loose, porous soil that encourages root growth. These two objectives—stable walks and loose soil for roots—typically conflict with each other unless we design the space appropriately. So how do you create a stable wearing surface and space for trees to grow?

Root paths

Root paths are narrow channels of loose soil that provide a small path for air that encourages root growth under pavement (Figure 10). A trenching machine is used to cut a trench through the compacted soil. Aeration mats are then placed in the trenches, which are backfilled with loose soil once the mat is in place. Roots tend to follow the paths because they provide a channel for airflow adjacent to the mat; roots follow the air. Encouraging roots to spread under the pavement can help to prevent roots from circling around in the small cutout in the sidewalk, which is a common cause for trees blowing over during hurricanes. This method is preferred over just providing a cutout or box of soil, though it does not significantly increase the amount of soil space.

Figure 9
Rather than planting in the thin strip of soil space between the sidewalk and street (top), plant trees in the open space on the other side of the walk (bottom).

Figure 10
Root paths provide channels for air beneath the sidewalk to allow roots to spread beyond the planting pit.
Planting strips

Planting strips are long sections of soil without pavement on top that provide much more soil volume for trees than root paths. Notice the sidewalks bisecting the strips of turf in the right photograph (Figure 11). This is a necessary design consideration because it is important to keep pedestrian traffic off of the open soil around these trees to prevent soil compaction. Given this consideration, planting strips may be more practical in areas that are less busy. Planting turf and flowers at the base of the tree make it far more likely that the trees will receive adequate irrigation and could improve tree growth, though this may attract people to sit or walk on the turf. Never pile soil on top of the root ball or on the trunk.

Structural soil

Structural soil is designed to support the weight of walks, roads, pedestrians and vehicles, as well as provide a well-aerated soil substrate for tree root growth (Figure 12). In structural soil, weight is transferred from one aggregate (rock) to another, with enough soil to almost fill the space between the aggregates. The aggregates are angular rocks that are typically about 1 inch in diameter. Roots grow well in the soil between the aggregates, which is not compacted because load is transferred to the rocks.

This technique is being used in urban areas due to its effectiveness at supporting heavy traffic and allowing tree growth in tough urban situations. The process of mixing the soil can be labor intensive and needs to be done very carefully. Because 80% of the volume of structural soil is comprised of rocks, a large amount is needed to meet adequate root volume requirements.

Figure 11

Planting strips increases the soil area significantly, but the soil can become compacted in high traffic areas. Consider using paths to direct traffic (top). Planting in narrow strips (bottom) can cause walks to lift prematurely; gravel under the walk can help reduce sidewalk lifting.

Figure 12

Structural soil can be used beneath paved surfaces that bear heavy traffic. The weight on the surface is transferred to the rocks, while the soil between the rocks is not compacted and provides space for roots to grow. Soil typically represents about 20% of the volume of structural soil.
Suspended sidewalk

Sidewalk suspension or cantilever can allow a great deal of soil volume for trees and addresses the issue of compaction (Figure 13). There is no contact between the bottom of the sidewalk slab and the soil; the slabs rest on supports and pilings. This allows the planting pit to be filled with well-aerated, quality soil. Suspending the sidewalk avoids issues with soil compaction so that roots can spread without interrupting the hardscape. One product that has been recently introduced to the market, Silva Cells®, is an example of the suspended sidewalk technique.

Step 3—Plant trees in groups.

In addition to root space, a key design consideration for a wind-resistant landscape is to plant trees in groups (Figure 14). The definition for a grouping is five or more trees sharing the same soil space. The goal is to create a healthy urban forest with a mixture of young and mature trees that provides benefits such as canopy cover and protection from high winds. Damage to buildings and other structures is usually less severe on properties with high tree density than on properties with isolated trees spaced far apart.

Figure 13

Suspending the sidewalk on vertical supports stabilizes the walk and allows roots to grow well in uncompacted soil.

Figure 14

A historic neighborhood a few blocks from the downtown area of a small city has large trees due to large soil spaces (top). New trees positioned far apart in small soil spaces will take many years to form a canopy cover, if ever (middle). Merging soil into long wide strips allows roots to share space, resulting in successful urban designs (bottom).
A sustainable approach to designing parking lots

We have become accustomed to seeing large areas of land stripped to make a parking lot, and all the large trees clear cut to be replaced by a few small saplings. A more sustainable approach would be to evaluate the mature trees, remove the ones that are in decline or have poor structure or poor root systems, and design the parking lot around the existing, healthy trees. Replace the trees removed with groupings of young trees, rather than small islands that can only support one or two trees for a short period of time. Consider that large healthy trees, even if confined to one area, will shade a greater portion of a parking lot than lots of little islands with small, short-lived trees providing little to no shade. Trees in islands frequently have to be replaced and rarely fulfill the design intent.

Figure 15
Contrast the typical planting island (top) where trees rarely become large with a buffer strip of trees (bottom). Grouping trees together in one large area is a sustainable design practice. These kinds of plantings will last many years.

New Design/Construction: Selecting the Right Tree

When soil space is limited, or the soil is shallow (less than 2 or 3 feet), rocky, or of poor quality, plant small maturing trees (those that mature at less than about 35 feet). There is an exciting variety of small trees that is currently underused for urban plantings but some of them are not available in large sizes. Although they are shorter than large maturing trees, small trees still provide some shade benefits (Figure 16). Rather than planting a large tree in a confined space, where much damage could occur from the tree blowing down during a hurricane, the preferred option is to go with the smaller tree which is more likely to survive a hurricane (see Chapter 7—Choosing Suitable Trees for Urban and Suburban Sites: Site Evaluation and Species Selection). Research has found that certain tree species, including many native species and palms, tolerate hurricanes (see Chapters 8 and 9—Selecting Species for Wind Resistance).

Figure 16
Small trees planted in a small space can help preserve the sidewalk but small trees provide very little canopy or shading unless planted close together as shown here.

Literature Cited

Introduction

Selecting the right tree for a particular place can avoid costly disappointments later. Trees adapted to the planting site are more likely to remain standing in hurricanes. Thorough site evaluation can ensure that the chosen tree will survive conditions inherent to the location.

Proper site evaluation, planning, and execution can result in a successful urban forest that resists hurricanes. Figure 1 shows a successful canopied street. These live oak trees were chosen for their wind-resistant structure and ability to provide shade, but they were only able to thrive given the adequate open soil space and distance from above-ground structures, such as street lights and wires.

A simple way to begin a site evaluation is to drive around town to find out which species grow well in landscapes with similar site attributes. It is important to keep in mind that no two sites are exactly alike; various conditions both above and below the ground affect the success of a particular tree species. Visiting a local public garden or nursery is also a great way to learn about all the different species that are available and being grown locally. A wide variety of books and web materials can provide specific information about growing and selecting trees in the area.
Site Evaluation

Site evaluation is the first step in selecting proper trees for a planting site. It is important to consider both above-ground and below-ground site attributes during this assessment. Many people skip the site evaluation process, which explains why trees planted in urban areas are so often short-lived.

Hardiness

Tree adaptations to regions of the country are designated by their hardiness zones. The hardiness zone map, developed by the United States Department of Agriculture, specifies the average lowest winter temperature expected for regions in North America. When choosing trees for a planting site, first note the hardiness zone number of the planting site on the hardiness map. Trees with a hardiness zone range that includes this number are best suited for the site.

Above-Ground Site Analysis

In the above-ground evaluation, many elements should be taken into account. Environmental factors such as light and slope exposure, wind, salt and existing tree presence should be considered, as well as urban conditions such as overhead wires, street and security lights, buildings, signs, vandalism and regulations.

Light Exposure

Note how many hours of direct sun the planting site receives in the summer. Remember to account for the seasonal change in the sun angle when evaluating sites in other seasons. Trees such as crape myrtle that require full sun need at least six hours of direct sun, though all-day sun produces the best form and growth. Trees suited for full sun to partial sun/partial shade will adapt to a site receiving three to six hours of direct sun. Trees that require some shade are adapted to sites receiving less than three hours of direct sun. Most large trees grow best in full sun.

Sunlight reflected from glass or a wall on buildings can increase the heat load on a tree planted near a building. Drought-tolerant trees that grow in full sun are best suited for this kind of site. In addition, providing a large area of soil for roots to explore often helps trees withstand reflected light because the trees have access to more soil from which to absorb water. Irrigation helps these trees as well.

Slope Exposure

Trees with thin bark (i.e., cherries, plums, maples) can transplant poorly on southern and western slopes. Transpiration and evaporation from the soil are enhanced on south and west slopes, making it more difficult to maintain adequate soil moisture. Because of this, plan on providing more irrigation to southern and western exposures to help prevent desiccation; drought-tolerant trees are best adapted to these exposures. Northern slopes are more protected from direct sun exposure, and the soil here stays moist longer.

Wind

Wind increases the amount of water lost from a tree to the atmosphere. Therefore, in areas exposed to higher winds (i.e., near the beach), consider choosing only drought-tolerant trees. Otherwise, special provisions should be made to increase the availability of irrigation or to protect the site from direct wind. If the site has poorly drained soil, trees will need to be both wet and drought-tolerant.

Salt

Airborne salt affects trees by burning back twigs and foliage, or through roots after it is deposited on the ground and penetrates into the soil. Salt-tolerant trees are often deformed by direct exposure to salty air, but they survive and grow just fine. Foliage on salt-sensitive trees burns, and trees become deformed and grow poorly when exposed to salty air. Trees with one-sided canopies near the coast can be very susceptible to hurricane-force winds that impact the canopy from the heavy side, but this is unavoidable.

Other Trees

Young trees that tend to develop broad canopies and that require full or at least partial sun (oaks, mahoganies, etc.) often bend toward the sunlight and develop a one-sided canopy when they are planted under a canopy of established trees. Trees planted between existing established trees may grow slowly or not at all due to root competition and lack of water and shade.

Overhead Wires and Street/Security Lights

Look up before you plant. Trees are often planted too close to power lines and security lights. When branches reach wires, the utility company must prune them to ensure uninterrupted utility service. Unfortunately, this costs utility companies (and ultimately the customers) billions of dollars each year in the United States. We could greatly lower costs and minimize damage in
hurricanes by planting only properly sized trees near wires (Table 1). It is best to plant trees as far away from wires as possible (Figure 2).

<table>
<thead>
<tr>
<th>DISTANCE FROM WIRES OR LIGHT</th>
<th>TREE SIZE AT MATURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–6 feet</td>
<td>Planting is not recommended unless trees remain under 25 feet tall</td>
</tr>
<tr>
<td>6–40 feet</td>
<td>Height should be 10 feet or shorter than wire/light or canopy diameter should be less than twice the distance to wire/light</td>
</tr>
<tr>
<td>more than 40 feet</td>
<td>Any tree can be planted</td>
</tr>
</tbody>
</table>

Table 1. These are suggestions for planting trees within 40 feet of wires or street lights.

Trees are often located in the same parking lot island as overhead security lights. Eventually the tree canopy will grow into the structure, blocking the desired light. This requires regular pruning to clear the light, which results in a deformed canopy. Good planning locates trees and security lights away from each other, positions lights about 12 feet from the ground so the tree canopy can grow over the light, or selects trees that remain small at maturity so that they remain under the light.

Buildings

Trees are most stable in the ground when they develop a uniform root system with straight roots distributed more or less evenly around the tree. If a tree is close to a building, the root system can become one-sided and unbalanced. Unbalanced root systems result in tree failure in strong winds. A tree with a narrow canopy may be a good choice within 10 feet of a building, although tree canopies can adapt by growing more on the side away from the building. If shade is desired, consider planting several small-stature trees to create a closed canopy (Figure 3).

Figure 2

Planting trees far from overhead wires (top) reduces costly maintenance and service outages in storms. Trees located under wires (bottom) are costly to maintain and can bring down the wires in strong winds. Some communities plant large trees under wires and prune to keep them clear of wires.

Figure 3

Plant small-stature trees in groups if shade is desired near buildings. Canopies catch the wind, and trees can blow over when they grow substantially above the roof line.
Signs

Signs and trees frequently conflict with each other due to poor planning. To help prevent this, plant large trees near low signs and small trees near tall signs. Large-maturing trees could be in the way of a low sign for several years after planting, but if the tree is grown with a single trunk, lower limbs can be reduced and eventually removed so the sign remains visible. Many communities have implemented a landscape code requiring signs be no more than 8–10 feet from the ground, eliminating this potentially costly problem. The best ordinances place signs 3–4 feet from the ground.

Vandalism

People sometimes intentionally destroy or injure trees, or they may be unintentionally injured if they are planted in vulnerable sites such as sidewalk cutouts, where people walk close to the trees. If vandalism is a concern, consider not planting trees with thin bark (e.g., red maple), or choose trees at least 4 inches in trunk diameter.

Below-Ground Site Analysis

Important soil attributes that affect tree selection are pH, drainage, depth, salinity, distance to the water table, and obstacles to root growth such as curbs. Many plantings fail because these factors are improperly evaluated or ignored. Early evaluation will allow you to identify good soil and make provisions to remove and stockpile it. Good soil is precious and should not be wasted. It can be brought back to the site once the job is complete to promote tree growth. Pre-construction planning also gives you the opportunity to work with your contractors to prevent excessive soil compaction in areas where trees will be preserved and planted. Isolate these areas from heavy equipment and other vehicles using sturdy fences, and levy fines on contractors for violations.

Rooting Space Restrictions

Match ultimate tree size to the soil volume available for root growth. This strategy helps keep trees healthy and stable in storms. It also prevents damage to surrounding sidewalks, curbs and pavement (Figure 4). Soil under pavement is typically poorly aerated and compacted, a situation that is considered inhospitable for roots, unless soil is coarse sand and well drained. Roots will be mostly confined to the soil space not covered by pavement or the space between the soil and bottom of the pavement. This will inhibit development of a strong root system and can result in the tree becoming unstable in hurricanes. Some wet-site-tolerant trees (e.g., baldcypress) are adapted to produce roots under pavement, and they can remain upright in strong winds.

Soil pH

Soil pH governs availability of nutrients to plants and also affects activity of soil microorganisms. A pH test should be conducted in several areas of the site, wherever soil color or texture appear different. Site pH may vary too much to plant the same species across the entire job.

To collect samples for testing from an open area such as a lawn where soil may be fairly uniform, dig about 10 small holes five to ten feet apart with a trowel or shovel. Remove a slice of soil from the side of each hole from the surface down to 12 inches deep. You might choose to use a portable soil coring device to collect the samples if one is available. Mix soil together in a clean plastic bag or clean bucket or jar and take or mail a sub-sample (about a pint) to a lab to be tested.

Most trees can grow in soils with a pH between 4.8 and 7.2. If the soil is less than 4.8, select trees tolerant of acidic soils. If the soil is greater than 7.2, select trees tolerant of alkaline soils. Few trees grow well in soils with a pH above 9.0.
Compacted Soil, Poor Drainage, and Low Oxygen

Urban soils are often compacted and poorly drained; even sandy soil can compact. These soils contain little oxygen—a gas that tree roots need to survive and grow. Only species and cultivars tolerant of wet sites can survive in the difficult soils (e.g. baldcypress, sweetbay, pond apple, etc.). Use of trees with aggressive root systems (e.g. ficus and oak) should be considered carefully because large surface roots often form. These can disrupt lawn mowing operations and can damage curbs, sidewalks, pavement, and other nearby structures. Large shade trees often fall over in hurricane-force winds because inhospitable soil prevented their establishing deep, stabilizing root systems. Plant small- to medium-sized trees (under 40 feet tall at maturity), for a more hurricane-resistant landscape.

To check for compaction and drainage, dig several holes at least 18 inches deep around the site. If soil is very difficult to dig with a shovel, it may be compacted. If soil is fairly easy to dig into with a shovel, it is probably not compacted. Drainage can be determined by filling these holes with water (Figure 5).

If soil is very compacted and hard all the way down to the bottom of the planting hole, then wet-site-tolerant trees are most appropriate. Expect many roots to develop at the surface. Occasionally, soil is loose underneath and compacted only on the surface. If you can break up the compacted layer on the surface for 15 feet or more around the tree before planting, drainage and tree growth may improve. In this case, trees can be chosen regardless of their wet-site tolerance.

Subsurface Compacted Layers

Soil loosely spread over compacted subsoil creates special challenges. Roots often grow only in the loose soil and will not penetrate the compacted subsoil (Figure 6). Small to medium-sized trees are recommended if less than 2 feet of loose soil will be spread over a compacted subsoil. This is because large-maturing trees could become unstable and hazardous due to shallow root systems (Figure 7).
Soil Depth and Distance to the Water Table

If bedrock comes close to the surface or if there is little soil, plant only small to medium-sized trees. Large-maturing trees in soil less than two feet deep could topple over in storms as they grow older because they lack deep roots. Roots on some trees can grow in solution holes in oolitic limestone to secure the tree firmly.

Dig several holes two to three feet deep and wait two to four hours if necessary. Any tree can be planted if no water appears in the hole. If water appears in the hole, select trees that tolerate wet sites. If the distance to the water table is less than 2 feet, plant small- to medium-sized trees. Possible exceptions are baldcypress and tupelos, especially if they are planted in groups.

Distance to the water table often varies during the year. It might be several inches below the surface in the cooler season and drop several feet in the growing season because transpiration pulls it from the soil. Special weather events can influence water table depth also. Sites with varying conditions should be considered poorly drained. To help avoid making erroneous conclusions about depth to the water table, determine depth during the coolest or wettest season. Consult local soil experts for this.

Underground Utilities

Do not plant a tree before determining where underground utilities are located (Figure 8). Consult local cable companies, water/sewer departments, electric utilities, and telephone and gas companies before digging. Many states have a hotline to call before digging, such as the Sunshine State One Call of Florida (1-800-432-4770). Roots of large-maturing trees planted within ten feet of underground utility lines could be damaged when the utility is serviced. For this reason, some communities restrict planting near these utilities. Roots usually will not penetrate well-designed, properly installed utilities that do not leak water. Roots sometimes grow in the trench dug to hold the utility because it may be less compacted than surrounding soil.

Potential Site Modifications

Modifications made to the site can help accommodate a wider variety of tree species. When made before planting, site modifications such as moving wires or street lights, grading, improving drainage, and incorporating soil amendments over broad areas can have an impact on soil conditions that will affect tree growth and species selection.

Moving Lights and Wires

Street lights and overhead power lines can be moved or modified to make room for trees. Though this is not commonplace, it is surprising how often it’s done once the suggestion is made. In many instances, it is a more permanent solution to a design problem, allowing trees to be planted along a street in an area where they should not be planted without moving or modifying fixtures (Figure 9). Some communities design utility corridors which contain utilities within a specific area and allow trees to be planted away from the corridor without interference.

Changing Soil pH

It is better to plant trees adapted to the existing soil pH than to change soil pH. Applications of sulfur or limestone to soil usually provide only a temporary pH change. Regular applications must be maintained to adjust the pH levels. It is best to plant species that are tolerant of the pH at the site, or replace the soil.
Improving Drainage and Reducing Runoff

Water running off a site can carry soil, pesticides, and fertilizers that contribute to environmental degradation. Soil is often graded (shaped) to keep as much water on the site as possible. To reduce runoff and sedimentation, redirected water should stay on site, rather than being channeled into streets or streams. Highway and other linear spaces surrounded by curbing can be designed to retain water if drainage is adequate.

Use a trencher to dig four or more trenches out from the planting hole, then loosely backfill with the soil from the trench (Figure 10). This provides channels for root growth in a compacted site, improves drainage a little, increases water percolation, and reduces runoff.

Other Soil Improvements

Some soil modification techniques can improve soil conditions for root growth. These include adding fill soil, replacing soil, and adding inorganic or organic matter over a large area. Modifying the small area in backfill soil adjacent to the root ball does not benefit trees. Site design and modification is covered in much detail in Chapter 6—Urban Design for a Wind Resistant Urban Forest.

Evaluate Maintenance Practices

Understanding how the site will be managed after planting is a critical factor in tree selection. Maintenance issues such as irrigation, pruning, fertilization, and pest control can affect whether a tree is able to thrive. For example, if the planner knows that trees will not receive any pruning once they are in the landscape, then a tree with a naturally good structure (e.g. excurrent growth habit) is preferred.

Irrigation

The ability to deliver irrigation determines which species and nursery stock sizes are best suited for the site. If trees can be irrigated regularly only until they are established, drought-tolerant trees should be chosen, and nursery stock of any size can be planted. If trees receive irrigation during establishment and then regularly during the life of the tree, or if you are planting in the plant’s native range and soil type, any tree regardless of drought tolerance can be planted (Table 2). If irrigation cannot be supplied for the period of time shown in Table 2, then plant smaller-sized nursery stock.

Table 2. Irrigation schedules depend on size of nursery stock and desired objective. Establishment takes approximately 3 to 5 months per inch of trunk caliper.

<table>
<thead>
<tr>
<th>SIZE OF NURSERY STOCK</th>
<th>IRRIGATION SCHEDULE FOR VIGOR</th>
<th>IRRIGATION SCHEDULE FOR SURVIVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 inch caliper</td>
<td>Daily: 2 weeks</td>
<td>Twice weekly for 2-3 months</td>
</tr>
<tr>
<td></td>
<td>Every other day: 2 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekly: until established</td>
<td></td>
</tr>
<tr>
<td>2-4 inch caliper</td>
<td>Daily: 1 month</td>
<td>Twice weekly for 3-4 months</td>
</tr>
<tr>
<td></td>
<td>Every other day: 3 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekly: until established</td>
<td></td>
</tr>
<tr>
<td>>4 inch caliper</td>
<td>Daily: 6 weeks</td>
<td>Twice weekly for 4-5 months</td>
</tr>
<tr>
<td></td>
<td>Every other day: 5 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weekly: until established</td>
<td></td>
</tr>
</tbody>
</table>

Note: Some irrigation is needed in extended droughts to keep trees alive in the first 2-3 years after planting even after establishment.
Pruning

Trees should be pruned regularly to maintain good health and longevity. An effective pruning program helps trees resist hurricane-force winds. An effective urban forestry program makes this necessary pruning an integral part of the budget. These programs budget for structural pruning for the first 25 years after planting (see Chapter 12—Designing a Preventive Pruning Program in Your Community: Young Trees for detail). Unfortunately, tree pruning budgets are often too low to allow pruning every 3 to 5 years following planting. If this is the case, consider planting those species that require only a moderate amount of pruning to develop and maintain good structure. This list can be found on the website listed at the end of the document. It is a short list!

If there will be infrequent or no pruning, or if no one knows when or how trees will be pruned, then do not plant large-maturing trees if there is a structure (i.e., streetlight) that may conflict with tree growth. For maximum wind firmness in hurricanes, it is best to plant hurricane-resistant trees (see Chapter 8—Selecting Southeastern Coastal Tree Species for Wind Resistance and Chapter 9—Selecting Tropical and Subtropical Tree Species for Wind Resistance), including those with a naturally good structure, such as magnolia or baldcypress.

Fertilization

Fertilization is mostly an issue in alkaline soils that cause micronutrient deficiencies. If a tree that is not tolerant of alkaline soil (e.g. queen palm) must be planted in a soil with alkaline pH for historic or other special reasons, then be prepared to conduct a regular monitoring and treatment program designed to prevent micronutrient deficiencies. See the Florida Trees website listed at the end of this document for a list of trees tolerant of alkaline soils.

Cleanup

Trees with large fruit (royal poinciana), hard fruit (hickory or mahogany) or very fleshy fruit (fig, seagrape, cocoplum, or queen palm) can create a mess or hazard on sidewalks and pavement beneath the canopy. Pedestrians can slip and fall on the fruit, and it can be unsightly. If cleanup budgets are low, consider planting trees without this type of messy fruit, such as the fruitless ‘Rotundiloba’ cultivar of sweetgum, in areas with high pedestrian traffic. Ethephon sprays can be used on some species to halt fruit production, but proper timing is crucial.

Choose Desirable Tree Attributes

Up to this point in the evaluation process, trees have been chosen primarily for their ability to grow at the site. While this is the most crucial criterion for tree selection, desired tree attributes such as function, size, form, and longevity are also important when choosing a species.

Function

Healthy trees provide us with many benefits. They give shade, produce oxygen, control erosion, protect our water resources, increase asphalt durability, support wildlife, and stabilize stream banks. The function we would like a tree to provide may dictate its size, shape (form), life span, canopy density, color, growth rate, fruit characteristics and other attributes.

Mature Size

Large trees (>50 ft at mature height) are the obvious choice for providing shade to large open spaces and for planting along streets if there is proper space above and below ground. Medium or large trees will cast the most shade onto a building, which can reduce air conditioning bills when the trees are placed properly. Keep in mind, however, that larger trees are more likely to be damaged and cause damage than small trees. Prudent managers weigh the advantages and disadvantages of planting large-sized shade trees.

Small trees (<30 ft at mature height) are often suggested for planting in downtown areas where soil space is limited, but they provide little shade. Small or medium-sized trees may be good choices for planting near a deck or patio, or in areas exposed to potential hurricane-force winds. Bear in mind, however, that the benefits small trees provide are small compared to large trees.

Form

Tree form can have a big impact on tree maintenance requirements. There are many urban landscape situations that call for trees near pavement. Small, spreading trees that are multi-trunked require regular pruning if they are planted too close to a sidewalk, whereas a small, upright tree or a larger tree can be trained to grow over the walk or street (Figure 11). Trees with a pyramidal form usually require less pruning to develop strong, wind-resistant branch structure than
those with other forms. Trees with rounded, oval or spreading canopies often need periodic pruning in the first 25 years after planting to ensure good structure and to provide clearance.

Longevity

It would appear that large, long-lived trees might be the logical choice for planting in most landscape situations, since they would provide for a lasting effect. However, with reasonable placement and care, long-lived trees will probably outlast many of today’s streets, homes and buildings. Many structures are renovated or expanded 30 to 50 years after construction. The renovation is often so extensive that it becomes difficult to provide the needed protection for a large, long-lived tree’s extensive root system in order to keep the tree alive. For this reason, concern about tree longevity may be less important in highly urbanized landscapes unless special provisions are undertaken to protect the tree.

Tree Selection

It is important to plant and maintain a diversity of tree species throughout the community. This helps spread the risk of damage in storms. It may require more work and creativity to find a variety of trees that can withstand urban conditions, but it is well worth the effort. Species diversity allows a landscape to withstand devastation by insect or disease outbreaks, and if executed appropriately can provide a more aesthetic appeal. However, species selection alone will not prevent danger in storms. Trees must be positioned and maintained appropriately in order to create hurricane resistant urban forests.

Additional Resources:

For Final Selection of Northern Trees
http://orb.at.ufl.edu/TREES/index.html

For Final Selection of Florida Trees
http://orb.at.ufl.edu/FloridaTrees/index.html

These links will take you to two sites with extensive information on trees. Using the conclusions from your site evaluation, you will be able to specify the characteristics of the planting site (i.e. poor drainage, dry soil, alkaline soil, etc.), and create a list of appropriate trees for your site conditions.
Introduction

Trees growing in urban and suburban landscapes offer many benefits to the community. However, when a tree or part of a tree breaks, it can cause extensive damage to people and property (Figure 1). A preventive pruning program is an important tool to minimize the risks of tree defects. The most common defects are codominant stems and aggressive low branches that either split from the tree or result in large pruning cuts upon removal (Figure 2). Problems such as these result in tree stress, reduce the life span of the tree, and place people and property at risk. Preventive pruning helps to promote good structure, making trees more resistant to storms and other natural forces. A research study in 2006 suggests that pruning trees significantly reduces trunk movement and damage when exposed to 120-mph winds.

Trees with good structure are characterized by a single dominant leader, strong branch unions without bark inclusions and a balanced canopy (Figure 3). Preventive or structural pruning is a process that can help to promote these attributes in trees.
Determine Your Objectives

The major objective of preventive structural pruning is to direct the growth of the tree so that it forms a sustainable structure. This is accomplished by pruning stems and branches that are not growing in the correct direction or position.

<table>
<thead>
<tr>
<th>Structural issues that cause trees to fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codominant stems</td>
</tr>
<tr>
<td>Included bark</td>
</tr>
<tr>
<td>Unbalanced canopy</td>
</tr>
<tr>
<td>Lions-tailing or over-lifting</td>
</tr>
<tr>
<td>Large lower limbs</td>
</tr>
</tbody>
</table>

Correction of Structural Issues

Codominant Stems and Included Bark

Codominant stems are stems of equal size originating from the same point on the tree. Included bark is bark pinched between two stems creating a weak union. Codominant stems with a ‘V’ shaped union are often accompanied by included bark (Figure 4). This union is weak because the bark inclusion prevents any physical connection between the two stems. Instead of overlapping wood creating a strong connection, the two stems push each other apart as they grow and a crack develops. Researchers at the University of Florida have visited several hurricane sites, and found time and time again that trees failed due to structural issues like codominant stems and bark inclusions.
Strong branch unions are ‘U’ shaped and have a prominent collar (Figure 5). The collar is a swelling formed by overlapping trunk and branch wood. This forms a strong union resistant to breakage.

Unbalanced Canopy

An unbalanced canopy occurs when one side of the tree canopy is much heavier than the other, or when most of the canopy weight is at the tips of branches. The latter is a product of lions-tailing or over-lifting, a poor pruning practice that removes all of the live foliage along the lower and interior parts of the main branches (Figure 6). Lions-tailing is generally accepted by professionals as a poor pruning practice that makes trees more susceptible to wind damage. Lions-tailing encourages more growth at the tips of the branches, resulting in a taller and wider tree. This results in foliage exactly where it is unwanted; that is, higher off the ground. Lions-tailing is often performed as a type of thinning; however, this type of pruning routinely encourages sprouting along the main branches and the canopy quickly fills back in with foliage. These sprouts often have weak connections to the stems and break easily in storms. In addition, lions-tailed trees that are damaged in storms are difficult to restore because the branches arborists would normally cut back to have already been removed.

Large Lower Limbs

Removal of lower limbs is important in order to provide clearance for pedestrian and vehicular traffic. Too often lower limbs are removed only when they have become large and have started to droop, many years after planting. Removal of large branches can initiate decay in the trunk, especially in species prone to decay (Figure 7). Large limbs left to grow may also develop structural defects such as excessive end weight. This defect can increase the likelihood of branch failure. It is important to keep in mind that low branches on young trees are temporary and will have to be removed in the future. Manage lower branches to prevent structural defects from forming.
Pruning to Promote Strong Structure

Developing a preventive pruning program requires that managers be familiar with the techniques of structural pruning. Structural pruning should be practiced for the first 15 to 25 years of a tree’s life. This is the amount of time required to establish strong structure in the canopy and will help to make the tree more resistant to storm damage (Figure 8). In structural pruning, reduction and removal cuts are used to slow the growth of large or rapidly growing branches that compete with the leader. This encourages the one stem you chose as the leader to grow faster.

Components of Structural Pruning

1. Develop or maintain a dominant leader
2. Identify the lowest branches in the permanent canopy
3. Prevent branches below the permanent canopy from growing too large
4. Keep all branches less than one half the trunk diameter
5. Space main branches along one dominant trunk
6. Suppress growth on branches with included bark

Component 1

Developing or Maintaining a Dominant Leader

Developing a dominant leader starts by identifying the stem that will make the best leader; typically it is the largest stem. This might be easy for some trees and more difficult in others. If all stems are about the same diameter, pick the one that is closest to the center of the canopy as the leader. Then determine which stems are competing with that leader, and decide where to shorten these competing stems (Figures 8 and 9).
Figure 9
Before and after structurally pruning a young live oak. Notice the arrow indicating where the stem on left side of the leader has been reduced.

Figure 10
All existing branches on these recently planted trees along a street will eventually have to be removed in order to provide clearance for buses, garbage trucks, and tractor trailers.
Component 2

Identifying the Lowest Branches in the Permanent Canopy

First, recognize that branches do not change their position on the trunk as the tree grows. In fact, it may be surprising for some to realize that all branches on trees with less than about 4” caliper will eventually be removed. Identifying the lowest branches in the permanent canopy will facilitate management of lower temporary branches (Figures 10 and 11).

Component 3

Prevent Branches below the Permanent Canopy from Growing Too Large

The lowest permanent branch on many shade trees should be at least 15 to 20 feet off the ground; all lower branches are eventually removed under ideal management. Lower branches should be subordinated (reduced) early to prevent them from becoming too large. This prevents the tree manager from having to make large pruning wounds on the trunk. We do this with reduction cuts to slow growth on these aggressive low branches. This helps to push new growth higher up in the canopy, and will minimize the amount of large cuts that need to be made on the trunk.
Component 4

Keep All Branches Less than Half the Trunk Diameter

Branches more than one-half the diameter of the trunk lack a branch protection zone. This zone inside the branch union is rich in chemicals that inhibit spread of organisms and decay from the pruning wound into the trunk. Keeping branches less than half the trunk diameter ensures that the branch collar and branch protection zone remain intact.

Component 5

Space Main Branches along One Dominant Trunk

Ideally, main branches (also called scaffold limbs) should be spaced along the dominant leader in two or more rotations around the trunk so that no branch is directly above another (Figure 12). Spacing scaffold limbs allows for the trunk and leader to develop properly, gives the canopy a more balanced form, and reduces wind resistance.

Component 6

Suppress Growth on Branches with Included Bark

Suppress growth on branches with included bark (Figure 13) to minimize the chance of breakage. As mentioned earlier, included bark is a structural defect that causes the union between branch and trunk to be very weak. Reduce branches with included bark to slow their growth until you are ready to remove them.

Figure 12

Major scaffold branches on this mahogany tree (right) have been spaced evenly throughout the canopy so that no branch is directly above another, making the tree more structurally sound (left).

Figure 13

Variations of included bark on four different trees.
Determining Pruning Cycle and Pruning Dose

Pruning Cycle

The next step in developing a preventive pruning program is to determine the pruning cycle and pruning dose. A pruning cycle is the interval of time between each pruning event. The interval is affected by many factors. For instance, trees coming from a nursery with sound pruning practices will have a better structure to start out with than trees coming from a nursery with poor pruning practices. These low quality trees may require more pruning at a higher interval than the high quality trees.

Pruning cycles are also affected by growth rate, climate and species. In warm climates where trees grow faster, the intervals between pruning events should be shorter. Species that are prone to decay should also be pruned more often so that the need to make large cuts can be avoided. A typical pruning cycle for an active, preventive urban forestry pruning program in Florida is about three years. If the pruning cycle is too long, defects may become more severe. This results in having to make large pruning cuts, which can initiate pockets of decay in the trunk and branches. A pruning cycle of 3-5 years will require a higher pruning dose to achieve pruning objectives. Conversely, a pruning cycle of 1-2 years will require a smaller dose.

<table>
<thead>
<tr>
<th>Suggested minimum pruning cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>At planting</td>
</tr>
<tr>
<td>Year 2 or 3</td>
</tr>
<tr>
<td>Year 5 or 6</td>
</tr>
<tr>
<td>Year 8 to 10</td>
</tr>
<tr>
<td>Year 13 to 15</td>
</tr>
</tbody>
</table>

Pruning Dose

The pruning dose is the amount of live tissue removed from the entire tree at one pruning. More than this can be removed from any particular stem or branch. Typically, arborists estimate this by evaluating how much foliage was removed by the pruning. Customer expectations, size of stems and pruning cycle can influence the pruning dose (Table 1).

With a large pruning dose, you create large pruning wounds and a large void in the canopy, greatly encouraging growth in unpruned portions of the tree. Conversely, a small pruning dose creates smaller pruning wounds and a smaller void in the canopy, encouraging modest growth in the unpruned portions of the tree. Large pruning doses are typically employed only on young trees. Municipalities often use larger pruning doses where aesthetics is less of a concern. A smaller pruning dose along with a shorter pruning cycle is nicely suited for residential and commercial properties where aesthetics are more of a concern. Pruning dose on mature trees should be less than 10% unless there is a good reason (e.g. a major defect) to remove more.

<table>
<thead>
<tr>
<th>Table 1. Uses of high and low pruning doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW PRUNING DOSE (5-20% of foliage removed)</td>
</tr>
<tr>
<td>HIGH PRUNING DOSE (>20% of foliage removed)</td>
</tr>
<tr>
<td>Mature or recently planted</td>
</tr>
<tr>
<td>Young, established trees</td>
</tr>
<tr>
<td>Cooler climates with short growing seasons</td>
</tr>
<tr>
<td>Warm climates with long growing seasons</td>
</tr>
<tr>
<td>Decay-prone species (poor compartmentalizers)</td>
</tr>
<tr>
<td>Decay-resistant species (good compartmentalizers)</td>
</tr>
</tbody>
</table>

Good compartmentalizers of decay (i.e. trees that resist decay following pruning) are those trees such as live oaks and mahogany that resist decay following an injury such as a wound or a pruning cut. When planning a pruning dose for your tree, you might want to set the maximum diameter of pruning cut smaller for a more decay-prone species (Table 2). The limit should be set for both reduction and removal cuts (Figures 14 and 15). Ideally, limit pruning cuts to 2-3 inches on decay-prone trees and 4-6 inches on decay-resistant trees. Large trees that are capable of forming heartwood will begin forming it as branch size increases to 8 inches or more. Exposing heartwood can initiate decay in certain species of trees. Professional arborists keep records of when species begin forming heartwood. This should help them decide when low interfering branches should be removed from trees.

<table>
<thead>
<tr>
<th>Table 2. Guidelines for determining maximum branch diameter to prune.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRANCH SIZE</td>
</tr>
<tr>
<td>Less than 1/3 trunk diameter</td>
</tr>
<tr>
<td>1/3 to 1/2 trunk diameter</td>
</tr>
<tr>
<td>More than 1/2 trunk diameter</td>
</tr>
<tr>
<td>Large enough to have heartwood</td>
</tr>
</tbody>
</table>
Executing the Pruning Plan

Making Proper Pruning Cuts

An important component of a good preventive pruning program is making proper pruning cuts. There are two types of pruning cuts; these are reduction cuts (Figure 14), and removal cuts (Figure 15).

A good pruning cut begins with an undercut about 12 inches from the trunk (Figure 16). A top cut is then made further out from the limb or directly above the undercut. The majority of the limb is safely removed in this step without causing any damage to the tree. (Disregarding these first two steps could cause damage to the trunk because the branch is often too heavy to hold itself up causing tissue to tear down through the collar.) The last step is to remove the remaining stub with a final cut, being careful not to cut flush against the trunk. It is very important to leave the collar intact (Figure 17). A branch collar is a swollen area at the base of the branch where it joins the trunk. The tissue is rich in energy reserves and chemicals that hinder the spread of decay. Good pruning cuts avoid cutting into the collar and typically leave a round-shaped wound, whereas flush cuts are oval-shaped (Figure 18). The branch bark ridge is where trunk bark pushes up into the union as it grows against branch bark (Figure 19). This indicates a strong union. Never cut off the branch bark ridge since this removes the branch protection zone inside the collar. The protection zone helps prevent decay organisms from entering the trunk.

Bad cuts are called flush cuts and are unacceptable in a preventive pruning program (Figure 20). Flush cuts remove the top of the branch bark ridge, and prevent the wound from sealing over properly. Flush cuts typically expose more bark on top of the cut than on the sides and bottom. These cuts typically close first on the sides then on the top and bottom. Severe decay can occur behind flush cuts, especially when they are large in diameter.
Figure 17
A close-up illustration showing where to make a removal cut.

Figure 18
A proper removal cut is made by cutting on the dotted line (A). When done correctly, a removal cut leaves the collar intact (B). The wound from a removal cut should be round in shape (C). Callus formation around a proper removal cut wound should be symmetrical (D). A good way to teach yourself and others how to properly prune is to practice making cuts to look like C and D.

Figure 19
The “yes” (dotted) line represents an appropriate removal cut. Cutting through the “no” (solid) line cuts through the collar and represents a flush cut.

Figure 20
Flush cuts remove the top of the branch bark ridge, and typically expose more bark on top of the cut than on the sides and bottom (top). Flush cuts prevent the wound from sealing over properly, and typically close first on the sides then on the top and bottom (bottom). Severe decay can occur behind flush cuts, especially large ones.
Pruning Plans

With six to seven pruning events in the first 25 to 30 years after planting, a good structure can be developed that will place the tree on the road to becoming a permanent fixture in the landscape. Less frequent pruning may be required if good quality nursery trees were planted with a dominant leader and trees were irrigated appropriately until established. However, even well structured nursery trees will require regular pruning after planting. The following is an example pruning program for the first 30 years of a tree's life.

First Five Years after Planting

In the first five years after planting, most of the branches are temporary; however, do not remove more than 35% of the live foliage at any one pruning visit. This will minimize any stress the tree may experience from loss of foliage. Reduce all branches greater than 1/2 the diameter of the trunk. Select one stem to be the leader, and reduce or remove all branches competing with it. Reduce and/or remove large, vigorous branches low in the canopy, and remove any broken, cracked, or severely damaged branches. The pruning cycle and dose for these first five years should be determined individually for each tree type and size—for example, a pruning visit could be scheduled for year two and year four, or only one visit may be necessary during this period.

Five to Twenty Years after Planting

During this portion of the pruning program do not remove more than 25-30% of the live foliage at one time. Select the lowest permanent limb in the canopy and reduce/remove branches lower than this. Continue to reduce all branches greater than 1/2 the diameter of the trunk. Identify the largest scaffold limbs of the permanent canopy and reduce branches within 18 inches of these. Reduce branches with included bark, and reduce or remove competing leaders. This can be done in stages if there are more than three competing leaders. Again, the pruning cycle will vary. At least three pruning visits should be scheduled during this period.

Twenty to Thirty Years after Planting

Remove all branches below the first permanent limb by twenty to thirty years after planting. Identify 5-10 permanent scaffold limbs, and reduce branches within 18-60 inches of these to avoid clustered branches. Continue to prevent the development of defects by reducing branches with included bark and those branches competing with the main leader.

Additional Reading

Illustrated Guide to Pruning

Landscape Plants
http://hort.ifas.ufl.edu/woody/pruning
Introduction

A preventive pruning program should be designed to create structurally sound trunk and branch architecture that will sustain a tree for a long time. The goal with mature trees is to develop and maintain a sound structure to minimize hazards such as branch failure. This task is easier provided a good structure was established earlier in the tree’s life.

When properly executed, a variety of benefits are derived from pruning. Benefits include reduced risk of branch and stem breakage, better clearance for vehicles and pedestrians, improved health and appearance, and enhanced view. When improperly performed, pruning can harm a tree’s health, stability, and appearance. Several consequences occur when pruning is not performed at all (Figure 1). These consequences include development of low limbs; weak, codominant stems; defects such as included bark; and accumulation of dead branches. Formation of codominant stems and defects such as included bark can lead to increased risk of breakage.

Figure 1

Problems that can develop on trees include codominant stems, included bark, broken and dead branches and large removed limbs that result in trunk decay.
One of the most common defects in planted trees is formation of large, low limbs. Branches of this nature could overextend and break, or they may droop under their own weight and have to be removed later, leaving a large pruning wound. Removal of large branches and those more than about half the trunk diameter is more likely to initiate decay than removal of smaller branches (Figure 2). Measures should be taken to avoid the occurrence of this defect.

With mature trees it is important to minimize hazards such as branch failure. Failures not only hurt the tree, but can also cause damage to people and property. Live branch removal is less desirable on mature trees, but it is sometimes necessary, for instance to remove a cracked live branch over a house. Hidden cracks often have elongated swellings such as seen at the arrows in Figure 3. A horizontal crack greatly affects the structural integrity of this branch. As such, it is a good candidate for reduction and/or thinning. The goal is to alleviate forces at the base of the branch. This is accomplished by reducing weight at the end of the branch so that the risk of breaking is minimized. Cleaning the crown by removing dead, diseased, or broken branches is a highly recommended practice on mature trees.

When planning a pruning program, it is essential to first evaluate the tree and the customer’s needs. This will aid in determining which objectives should be accomplished with pruning. Appropriate pruning methods can be chosen to meet these objectives. The arborist then enters the tree and makes appropriate pruning cuts for the chosen pruning methods. This decision is based on an understanding of branch attachment and tree biology.
Determine Pruning Objectives

No tree should be pruned without first establishing clearly defined objectives. Seven main objectives are described below, along with pruning methods that help meet those objectives. These objectives serve as examples and can be expanded or shortened to meet site conditions and customer expectations. Removing the correct stems and branches to accomplish specified objectives is as important as making correct pruning cuts. Even with proper pruning cuts, if the wrong branches or too many branches are removed, nothing of merit has been accomplished.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Reduce risk of failure</td>
<td>p. 3</td>
</tr>
<tr>
<td>b</td>
<td>Promote human safety</td>
<td>p. 3</td>
</tr>
<tr>
<td>c</td>
<td>Allow for safe passage</td>
<td>p. 4</td>
</tr>
<tr>
<td>d</td>
<td>Increase sun penetration to the ground</td>
<td>p. 4</td>
</tr>
<tr>
<td>e</td>
<td>Maintain health</td>
<td>p. 4</td>
</tr>
<tr>
<td>f</td>
<td>Influence flowering or fruit production</td>
<td>p. 4</td>
</tr>
<tr>
<td>g</td>
<td>Improve aesthetics</td>
<td>p. 4</td>
</tr>
</tbody>
</table>

a. Reduce Risk of Failure

Reduce failure risk by learning to recognize the structural problems in trees that can lead to failure (Figure 4). Risk of tree failure can be reduced by establishing a structural pruning program that begins at planting and could carry through the first 25 years or more, depending on species. This program should be designed to create structurally sound trunk and branch architecture that will sustain the tree for a long period. Some structural pruning can be conducted on older trees as well. Medium-aged and mature trees can be cleaned, thinned, reduced, raised, or restored to manage risk. The choice among these pruning methods depends on the tree and the situation. See Chapter 12 for a more detailed description on structural pruning.

b. Promote Human Safety

Pruning can prevent expensive damage to people and or property (Figure 5). If hazardous structural issues in trees can be recognized prior to a storm, pruning can help to mitigate their damaging effects. Developing a preventive pruning program for mature trees will help to reduce the likelihood of serious damage from trees.

Figure 4

The codominant stem (top) broke because of a bark inclusion at the branch union. Trees with decayed or severed roots fall over in storms (bottom).

Figure 5

If hazardous structural issues in trees can be recognized prior to a storm, pruning can help to mitigate their damaging effects.
c. Allow for Safe Passage
Growth can be directed away from an object such as a building, security light, or power line by reducing or removing limbs on that side of the tree. However, trees often grow back to fill the void created by pruning. Regular pruning is required to maintain artificial clearance. Shortening or removing low branches can raise the crown. Crown reduction or pollarding helps maintain a tree smaller than it would be without pruning. Utility pruning keeps limbs clear of overhead wires and other utility structures (Figure 6).

d. Increase Sun Penetration to the Ground
A lawn, ground covers, or shrubs can receive more sunlight when live foliage is removed from the crown of large overstory trees (Figure 7). The tree’s resistance to wind can also be reduced with pruning. Thinning, reduction, and pollarding are used to accomplish this.

e. Maintain Health
Health can be maintained by cleaning the crown, especially in medium-aged and mature trees. Removing dead, diseased, and rubbing branches in the crown of young trees also is important.

f. Influence Flower or Fruit Production
Pruning can influence the number and/or size of flowers or fruit. Fruit size can be increased on certain plants, such as peach, by removing some of the developing fruit or flowers. Flower cluster size can be increased on certain species, such as crape myrtle, by heading. Fruit production can be eliminated by removing flowers or developing fruit.

g. Improve Aesthetics
A tree can be pruned to improve appearance. Cleaning, reducing, thinning, pollarding, and restoring can be used to meet this objective.

Figure 6
This live oak will have to be pruned often to provide clearance from the power lines. A better less expensive option is to plant a lower-growing species.

Figure 7
Before (top) and after thinning (bottom). The circle shows the area that has been opened up for more light and air to pass through. This can reduce likelihood of breakage in storms. Note interior branches were NOT removed.
Determine Pruning Cycle and Dose

Energy reserves (starch, sugars, and oils) are stored in branches, stems, trunk, and roots. Energy reserves can be preserved by removing the fewest number of live branches necessary to accomplish the desired objective. Excessive branch removal depletes these reserves and reduces the ability of the tree to photosynthesize more energy. There needs to be a good reason to remove live branches on mature and over-mature trees (Figure 8).

Many trees generate adventitious sprouts in response to pruning as they attempt to replace the stored energy. Live branch pruning, however, is an essential ingredient to forming good structure, so it is a necessary procedure in an urban tree care program.

Figure 8

Only the lower right branch on this tree has been drawn to completion. The rest have been truncated for illustration purposes. When pruning an old tree, make cuts primarily on smaller branches toward the canopy edge only. Removing primary branches such as scaffold limbs may leave large pruning wounds and remove too much live tissue. Large old branches may have poor ability to restrict spread of decay following removal. Consider shortening or thinning the limb by removing tertiary and smaller branches instead of removing the branch entirely.
Execute the Preventive Pruning Plan

Make Proper Pruning Cuts

Three general types of cuts are used in arboricultural pruning: branch removal cuts, reduction cuts, and heading cuts. Removal cuts are the preferred type of cut because they leave the branch protection zone intact. The maximum and/or minimum diameter of pruning cuts should be stated before the work begins. Such specifications define the size of parts to be removed and the size of pruning wounds that result from the pruning to be performed.

Use Appropriate Pruning Methods

Pruning strategies for mature trees are quite different than those used for young trees. Often, it may be too late to make drastic structural changes to a mature tree. Good structure is something that should have been instilled in the beginning years of the tree's life. For mature trees your preventive pruning strategies are to 1) minimize hazardous conditions by cleaning and reducing weight where needed, 2) raise canopy where needed, and 3) maintain small-diameter interior branches for health and vigor.

These strategies are achieved through structural pruning, cleaning, thinning, raising, reducing, and balancing. Other important pruning tactics include root pruning, palm pruning, and restoration pruning.

Pruning for Structure

Structural pruning is the removal of live branches and stems to influence the orientation, spacing, growth rate, strength of attachment, and ultimate size of branches and stems (Figure 9). Structural pruning is used on young and medium-aged trees to help engineer a sustainable trunk and branch arrangement. If young trees are pruned to promote good structure, they likely will remain serviceable in the landscape for more years than trees that have not been structurally pruned. Waiting until the tree grows larger makes structural pruning much more difficult.

Structural pruning of large-maturing trees such as maples and oaks reduces certain defects and spaces main branches along one dominant trunk. It also reduces branches so they remain smaller than half the trunk diameter, which helps prevent structural failure later. In some cases, it may be too late to make meaningful structural changes to an already mature tree (Figure 10).
Structural pruning can be summed up as: subordinate or remove codominant stems. Four procedures should be considered when structural pruning. The first procedure is to clean the canopy by removing dead, broken, diseased, and dying branches. The second procedure is to choose and develop a dominant leader (Table 1). Multiple prunings over time (for example, 15 to 25 years) usually are required to develop a dominant leader. For medium aged and mature trees, it is important to maintain the leader that has been established (Figures 11 and 12). To do this, competing stems and branches are subordinated (reduced in length or thinned) or removed. Subordination is usually preferred over removal, especially if the problem stem (or stems) is larger than half the trunk diameter. Subordination of large stems may cause less trunk decay than removal, and the offending stem can always be removed later, if necessary.

Table 1. Steps to establish and maintain a dominant leader.

1. Choose the one stem that will make the best leader.
2. Identify which stems and branches are competing with this leader.
3. Decide how much to shorten these competing stems.
4. Prevent branches from growing larger than half the trunk diameter by regular pruning.

Figure 11
Competing stems in the upper right canopy were too long and heavy with foliage (top). Several cuts were made to subordinate some of the competing stems (center). The cuts can be easily seen in the following winter (bottom). Note that lower branches were not pruned.

Figure 12
This is the size of the branch that was removed with the first reduction cut shown in Figure 11. Three of these were removed from the upper right side of the canopy.
The third procedure is to select and establish the lowest permanent scaffold limb if the tree is old enough. Establish the lowest permanent limb by shortening vigorous branches below it and reducing any lower branches that grow up into the crown (Figure 13). The height of the lowest limb is determined by the location and intended function of the tree. For example, the lowest permanent limb on a street tree might be higher than that on a tree in your yard.

The fourth procedure is to select and establish scaffold limbs by subordinating or removing competing stems/branches. Scaffold selection can take 10 to 20 years or more depending on climate, the type of tree, and its location. Scaffold limbs are located above the lowest permanent limb and provide the base on which to build the permanent crown. Scaffold limbs should be free of serious defects such as included bark and cracks, should be among the largest on the tree, and should be appropriately spaced apart. Vertical spacing should be at least 18 inches or more for large-maturing trees and about 12 inches for smaller trees.

Pruning to Clean

Cleaning is the selective removal of dead, diseased, detached, and/or broken branches (Figure 14). This method of pruning is done to reduce the risk of branches falling from the tree and to reduce the movement of insects and diseases from dead or dying branches into the rest of the tree. It can be performed on trees of any age but is most common on medium-aged and mature trees. Cleaning is the preferred pruning method for mature trees because it does not remove live branches unnecessarily. Cleaning removes branches with cracks that may fail when the interior wood dries.

Figure 13

1) Cut back on branches a and b so branch c will become the scaffold branch at this position on the trunk. The portion of b was removed because it was growing up into the canopy; 2) remove or cut back (removal is shown) the main branch opposite e so e can become the scaffold branch at this point on the trunk. Branches c, d, and e are now spaced along the trunk. The two small branches left on the trunk opposite branch d can remain because they are not likely to grow fast to compete with d.

Figure 14

Although dead branches normally cause less damage in hurricanes than live branches with defects, removing dead branches represents good tree care. Any damage caused by these small broken branches would be minimal compared to the threat of damage from larger branches.
Pruning to Thin

Thinning is the selective removal of small live branches to reduce crown density (Figure 15). Because the majority of small branches are at the outside edge of the crown, thinning is focused in that area. Proper thinning retains crown shape and should provide an even distribution of foliage throughout the crown (Figure 16).

Thinning increases sunlight penetration and air movement through the crown. Increased light and air stimulates and maintains interior foliage, which can encourage taper on scaffold branches. Thinning can reduce the wind-sail effect of foliar clumps in the crown, and it can reduce the load on branch unions. Thinning a limb should be considered if cabling would be performed. Thinning also can remove suckers from the base of the tree and some water sprouts on the interior. Excessive removal of water sprouts often produces more water sprouts, so it is not recommended. Vigorous production of water sprouts on interior limbs often is a sign of overthinning or lion tailing (Figure 17).

Figure 15

Inappropriate thinning only leaves branches at the edge of the crown, making trees more vulnerable to wind damage. Appropriate thinning leaves live branches distributed all along the limbs by removing branches primarily from the edge of the crown.

Figure 16

Proper thinning retains crown shape and should provide an even distribution of foliage throughout the crown.
Excessive branch removal on the lower two-thirds of a branch or stem (lion tailing) can have adverse effects on the tree and therefore is not an acceptable pruning practice (Figure 17). Lion tailing transfers weight to the ends of branches and may result in sunburned bark tissue, water sprouts, cracks in branches, reduced branch taper, increased load on branch unions, and weakened branch structure. Lion tailing also changes the dynamics of the limb and often results in excessive branch breakage and sprouting.

Pruning to Raise (Elevate, Lift)

Raising is the selective removal of branches to provide vertical clearance (Figure 18). Crown raising shortens or removes lower branches of a tree to provide clearance for buildings, signs, vehicles, pedestrians, and vistas. Excessive removal of lower limbs can slow development of trunk taper, can cause cracks or decay in the trunk, and transfers too much weight to the top of the tree (Figure 19). Mature trees could become stressed if large-diameter lower branches are removed. Clearance can sometimes be achieved by shortening some of the low branches rather than removing them to prevent these problems. Structural pruning should be considered along with raising.

Figure 17
A lion-tailed tree (left) is stripped of foliage on the interior of the canopy. This produces excessive end weight at branch tips and makes the trees more susceptible to breakage in storms. Water sprouts (right) often result from stress in years following lion tailing.

Figure 18
Lower branches a and b can be removed to raise the crown. However, subordinating branches a and b by removing upper and lower branches a-1, a-2, b-1, and b-2 will cause less stress for the tree. Removing a-2 and b-2 helps raise the crown. Removing a-1 and b-1 ensures that the branches will not grow up to become part of the permanent canopy. Left unpruned, these branches are likely to remain vigorous and form low, codominant stems. Because structural pruning is important as well, branch c should be reduced to keep it from competing with the leader.

Figure 19
Over raising (left) often results in large pruning cuts and stress, leading to the production of water sprouts (right).
Pruning to Reduce (Shape, Drop-Crotch)

Reduction is the selective removal of branches and stems to decrease the height and/or spread of a tree or shrub (Figure 20). This type of pruning can be used to make the entire tree or portions of the tree smaller, which can reduce the likelihood of failure and direct branch growth away from buildings or signs. Portions of the crown, such as individual limbs, can be reduced to balance the canopy, provide clearance, or reduce likelihood of breakage on limbs with defects (Figure 21). Occasionally, the entire crown is reduced (Figures 22 and 23). Reducing or thinning should be considered if cabling is to be performed. Crown reduction should be accomplished with reduction cuts, not heading cuts.

Not all tree and shrub species can be reduced. Therefore, the species and plant health should be considered before starting work. Old, stressed, or mature trees could decline or become more stressed as a result of this treatment. When a limb on a mature tree is cut back to a lateral, no more than one half of its foliage should be removed. More can be removed on a young tree to accomplish particular objectives. More decay can enter the tree following reduction than following other pruning methods.

Figure 20
Reduction shortens stems and branches back to live lateral branches. (Left: removed stems and branch sections as shown by the dotted lines.) Notice that live, un-pruned branches remain on the edge of the new, smaller canopy, and no heading cuts were used. Properly done, this technique provides a more pleasing, un-pruned natural look to the tree compared to topping. Compared to topping, less decay is likely to enter the tree following reduction.

Figure 21
Reduction can be used to prevent the likelihood of failure on branches with excessive end weight (top). Branches may need to be shortened to balance the canopy or to prune it away from a structure or a sidewalk. This can be accomplished with small or large doses or reduction (bottom).

Figure 22
Clumped trees form a nice symmetrical canopy (top) but each individual tree is very one-sided. These individual trees are leaning away from the others as they grow. They are often lacking symmetry in their root systems as well. Roots on the opposite side of a lean play a large role in keeping a tree upright. Trees that lack roots to one side are prone to falling over (bottom). These trees are good candidates for canopy reduction and cabling to help prevent breakage.
Pruning to Restore

Restoration is the selective removal of branches, sprouts, and stubs from trees and shrubs that have been topped, severely headed, vandalized, lion tailed, broken in a storm, or otherwise damaged (Figure 24). The goal of restoration is to improve a tree or shrub's structure, form, or appearance.

On trees with many sprouts originating at the tips of branches, one to three sprouts on main branch stubs are selected to become permanent branches and to re-form a more natural-appearing crown. To accomplish this, consider shortening some sprouts, removing others, and leaving some untouched (Figure 25). Some vigorous sprouts that will remain as branches may need to be shortened to control growth and ensure adequate attachment for the size of the sprout. Lion-tailed trees can be restored by allowing sprouts to develop along the interior portion of limbs for one to three years depending on size, age, and condition of the tree (Figure 26). Then remove and shorten some of

Figure 23
Use reduction cuts on clumped trees to reduce the weight of each tree, especially leaning ones. Consider installing hardware (cables or braces) to help hold the stems together.

Figure 24
Restoration after a storm will take time, but it is possible.

Figure 25
Many sprouts form from the cut ends of topped or storm-damaged trees (top). Some sprouts also develop below the cuts. Initially they are poorly attached to the tree and can break easily. Begin by removing dead stubs, removing some sprouts completely, and shortening others using reduction cuts (dotted lines bottom). This leaves several unpruned sprouts to grow into branches. The shortened branches help protect the sprouts that remain (bottom).

Figure 26
Newly emerging sprouts developing along the interior portion of a limb (top). Remove and shorten some so untouched ones are spaced apart (bottom).
the sprouts along the entire length of the limbs so the untouched sprouts are evenly spaced apart. Restoration usually requires several prunings over a number of years.

Pollarding

Pollarding is a training system that involves severe heading through small stems the first year followed by annual sprout removal to maintain trees or shrubs at a predetermined size or to maintain a “formal” appearance (Figure 27). Pollarding is not topping (Figure 28).

Pollarding historically was used for shoot generation for fuel, shelter, and various products because of the abundance of adventitious sprouts that a tree or shrub produces in this process. The pollarding process should be started on deciduous trees when the tree is young by making heading cuts through stems and branches no more than about three years old. Severe heading (topping) through older tissue may kill or start a decline syndrome on some tree species (Figure 28).

To pollard a tree, make heading cuts at strategic locations so that the sprouts from all cuts have access to sunlight. After the initial cuts are made, no additional heading cuts should be necessary. After a few pruning cycles, pollard heads (also called knuckles or knobs) develop, and the tree produces sprouts from these knuckles. Sprouts that grow from knuckles should be removed during the dormant season, taking care not to cut into or below the knobs. The knobs are the key differentiating factor between pollarding and topping. If knobs are damaged or removed in subsequent pruning, the branches react as they would on a topped tree.

Pruning Conifers

Some pruning methods are not appropriate for all conifers. For example, branch spacing and scaffold limb development in conifers usually is not necessary. Few conifers respond well to pollarding or reduction.

Figure 27

Sprouts pruned back to pollard heads (left). Pollarded trees flushing out with new sprouts (right). All sprouts are removed annually, typically in the dormant season.

Figure 28

Topping (left) is an inappropriate way to reduce a canopy. This type of pruning uses heading cuts (right) and can result in more problems in the future such as decay and structural defects. Large heading cuts are made between branches and result in stubs.
When to Prune

The best time to prune live branches depends on the desired results. Removal of dying, diseased, broken, rubbing, or dead limbs can be accomplished at any time with little negative effect on the tree.

Growth is maximized and defects are easier to see on deciduous trees if live-branch pruning is done in the winter or before growth resumes in early spring. Pruning when trees are dormant can minimize the risk of pest problems associated with wounding and allow trees to take advantage of the full growing season to close and compartmentalize wounds.

The timing of pruning can be an important part of a plant health care program. For example, one of the ways to reduce the spread of oak wilt fungus is to prune during the dormant season and avoid pruning susceptible species during April, May, and June.

Plant growth can be reduced if live-branch pruning takes place during or soon after the initial growth flush. This is the period when trees have just expended a great deal of stored energy to produce roots, foliage, and early shoot growth so pruning at this time usually is not recommended because of the potential stresses. Do not prune live branches from stressed trees at this time because they need all their live foliage to help recover.

Flowering can be prevented or enhanced by pruning at the appropriate time of the year. To retain the most flowers on landscape trees that bloom on current season’s growth, such as crape myrtle (Lagerstroemia spp.) or linden (Tilia spp.), prune these trees in winter, prior to leaf emergence, or in the summer just after bloom. Plants that bloom on last season’s wood, such as crabapples (Malus) and cherries (Prunus), should be pruned just after bloom in order to preserve the flower display. Fruit trees can be pruned during the dormant season to enhance structure and distribute fruiting wood, and they are pruned after bloom to thin fruit.

Certain species of trees, such as maples (Acer spp.) and birches (Betula spp.), drip sap (bleed) when pruned in the early spring when sap flow is heavy. Although unattractive, sap drainage has little negative effect on tree growth or health, and some of it can be avoided by pruning in summer or at other times of the year.

Other Sources of Information

Introduction

This chapter brings together the information and tools from previous chapters and changes the focus to the community rather than the homeowner, and from individual trees to the urban forest. The urban forest is the collective sum of all trees and vegetation in and around an urban area. Urban forests are an integral part of a community’s well-being, so a management plan for its urban forest is essential to a community. An urban forest management plan should consider public and private trees as part of the urban ecosystem. An urban forest management plan does not allow a community to tell each individual or homeowner how to manage their property, but it does allow a community to take trees on private property into account so that planners can look at the entire forest as a resource to manage.

Communities (e.g. neighborhoods, homeowner associations, towns, or cities) can manage their tree resources to meet common goals using a management plan. By working together rather than as individuals, communities can maintain or enhance their urban forests and improve their well-being. This chapter along with preceding chapters can be used as a guide for citizen and tree care professional participation in managing the community’s urban forest and for community leaders in developing a plan for their urban forest.

The process outlined in this chapter is dynamic and adaptable and can be used by any community, regardless of type or size. All the components of this process are related and are part of the overall objective of achieving a healthy, wind-resistant urban forest. A healthy urban forest is composed of trees that maximize ecosystem benefits and withstand natural and anthropogenic stresses and disturbances, such as wind from hurricanes and tropical storms, flooding, pollution, etc. Several urban forest management and street tree master plans were reviewed in preparation of this chapter. Additionally, conversations with urban foresters from across the Southeastern US and elsewhere were used to develop this outline to help a community start its own process.
Why Develop an Urban Forest Management Plan?

An effective urban forest management plan should be developed and implemented before damage from a windstorm or hurricane occurs. It also can be used as a blueprint for post-hurricane response to damages after a storm. Developing a management plan can:

- Create a safe and attractive environment.
- Maintain or enhance public and private urban forest cover.
- Provide ways of responding to the community’s needs and requests.
- Maximize the well-being of residents and visitors.
- Minimize the costs of managing your trees and hazards to life and property.
- Improve coordination of management activities with other associations, neighborhoods, departments or offices.
- Establish measurable and long-term goals and objectives.

Figure 1 outlines a process that will answer four basic questions using seven general approaches:

1. What does the community want from its urban forest?
 - Creating a vision (p. 2)
 - Setting visions, goals and objectives (p. 3)
 - Getting community participation (p. 3)

2. What is the community’s urban forest resource?
 - Assessing the community’s tree, fiscal, and human resources (p. 5)

3. How can the community achieve the urban forest it wants?
 - Developing goals and objectives (p. 4)
 - Implementing a plan to meet the goals and objectives (p. 7)

4. Is the community achieving the urban forest it wants?
 - Monitoring and evaluating (p. 8)

Creating a Vision

At the beginning of this process, the community should identify a vision for its urban forest to achieve a functional management plan (Figure 1). A vision statement will help define the goals and objectives, which lay the framework for the management plan. A vision is the desired future condition of the urban forest, and it should be concise and meaningful (Hubbard 2000). This vision needs to be created by and accepted by the community. Community consensus is critical in defining what goals are most important because the time and resources available to implement those goals are limited. For example, the vision of the Urban Forest Hurricane Recovery Program might be to promote a healthy and wind-resistant urban forest. It could be aimed at helping citizens and communities to restore an urban forest after storm damage and to set better urban forest management practices so that future storms are less devastating.
Setting Visions, Goals and Objectives

Goals
Goals are the general statements about what your community is trying to accomplish. Each goal statement then has its own set of objectives. A goal for hurricane-prone communities could be to maintain or increase tree cover, wind resistance, and tree diversity.

Objectives
Objectives are focused, measurable, result-oriented activities that support the completion of a goal and help the community meet its vision. Some example objectives for a wind-resistant urban forest might be to remove hazardous trees, initiate a pruning program, and plant wind-resistant trees of different ages and sizes in groups in appropriate locations.

Different goals do not have to be exclusive or independent of one another. They often can be linked to achieve multiple benefits. If other goals for a wind-resistant urban forest are to reduce storm water runoff and energy use, specific objectives could be to 1) use porous surfaces in parking lots and 2) plant groups of wind-resistant trees for shade. These combined objectives could result in reduced storm water runoff and increased urban forest cover in your community. So, by selecting species that are wind-resistant and planting them in groups in appropriate areas to reduce storm water runoff, the community increases its tree canopy and shade, improves wind resistance, reduces energy and thereby achieves all three goals (Figure 2). In the following sections we will explain how this publication can be used to help you select some goals and objectives toward creating a more wind-resistant urban forest.

Community Participation
To be effective, the vision statement and well defined goals and objectives should be a community activity (Figure 1). Establish a broad-based community working group or team (Letson, 2001). A meeting facilitator is often needed to ensure that everyone is heard and that all concerns are identified. The group should meet periodically. For example, the working group could consist of:

- Private citizens
- Community and urban foresters
- Tree care professionals
- Parks and recreation, planning, zoning, and extension service representatives
- Emergency management services
- Media contacts
- Public utility providers
- Engineers
- Local non-profit organizations, and
- Other public entities depending on the characteristics of your community

An example of a working group was the one that helped develop Miami-Dade County’s Street Tree Master Plan which establishes the direction for planting and managing trees along streets and highways for beauty and environmental benefits. The group consisted of The Community Image Advisory Board, Department of Environmental Resources Management, Public Works, Planning and Zoning, Cooperative Extension, Office of Strategic Business Management, Parks and Recreation, Office of Emergency Management, among others (Miami-Dade County, 2007).

If the community has not participated in the development of the management plan from its outset, the plan should at least be presented to the community before it is implemented so that residents
and community planners can participate in the decision-making process and, if necessary, help develop alternative management options if initial proposals are not acceptable (Figure 1). Involving the community in the decision-making process will give the management plan a greater chance of acceptance and success:

- The community can help identify and develop alternative management options.
- The team can discover new information relevant to the community and urban forest.
- The plan and its actions will demonstrate fairness for all the members of the community.

Some ways of increasing community participation include:

- Discussing the plan with friends and neighbors.
- Organizing outreach activities such as news releases and public meetings.
- Developing educational programs for schools and other community groups.
- Establishing your city as a Tree City USA.

Developing Goals and Objectives

It is important to narrow down: (1) who will be responsible for implementing the plan; and (2) what and how and when the plan’s activities will be carried out (establishing a timeline). The information, lessons, and strategies from previous chapters can be included directly as objectives in your plan. For example:

- An objective to reduce or prevent the number of tree wind failures can use information from Chapter 6—Urban Design for a Wind Resistant Urban Forest, which presents appropriate design and plan management strategies. This chapter and Chapter 5—Lessons Learned from Hurricanes also present urban design strategies for increased wind resistance, such as planting trees in groups rather than individually and giving trees enough rooting space for their size (Figure 3).

- Specific post-hurricane restoration objectives and activities in your plan can use information from Chapter 4—Restoring Trees after a Hurricane, which explains specific tree pruning activities necessary for restoring trees after hurricanes. Also Chapter 12—Developing a Preventive Pruning Program: Young Trees and Chapter 13—Developing a Preventive Pruning Program: Mature Trees outline preventative pruning programs for young and mature trees. These can be used as multi-year objectives that can reduce damage from future storms for new and existing trees.

- Use of wind-resistant tree species is one objective for achieving a wind-resistant urban forest. Chapter 8—Selecting Southeastern Coastal Plain Trees Species for Wind Resistance and Chapter 9—Selecting Tropical and Subtropical Trees Species for Wind Resistance list tree species that have been determined to be wind resistant.

- Objectives can also incorporate lessons from past hurricanes. Chapter 5—Lessons Learned from Hurricanes for example mentions removing hazard trees before the wind does and being careful not to damage or cut main support roots during construction, since this will damage the tree’s anchoring system.

- After Hurricane Andrew, more trees were damaged as a result of hurricane debris clean up (Burban and Andersen 1994). By designating areas for debris storage and temporary housing, communities can avoid causing further damage to their urban forests.

- Additional goals and strategies to reduce your risk from tree damage can include maintaining diversity in your community by planting a mixture of species, ages, and layer tree and shrub canopies (Miller 1997).

Figure 3

Aerial view of the effects of a hurricane. Would proper species selection and planting trees in groups have prevented this?
Developing Goals and Objectives Specific to Your Climate

Among its urban forest master plan objectives, Rochester NY determined to select trees with strong branch structure to minimize ice storm damage, prohibit the planting of ash trees to minimize damage from emerald ash borer, and establish a database to identify and separate street segments covered by Federal Highway Administration reimbursement from those covered by Federal Emergency Management Agency (City of Rochester 2005). Other cities such as Urbana, Illinois have tree emergency response plans that closely follow their snow removal plan (Personal Communication, Mike Brunk, City Arborist).

Using the example from northern cities, hurricane-prone communities could develop emergency management goals as part of their plan (Letson, 2001). The draft urban forest management plan for Pineville, Louisiana, for example, calls for developing "storm plan" objectives to be followed when a storm occurs (City of Pineville, 2006). Although an objective like this might be complex for large metropolitan areas affected by the severe 2004-2005 hurricane season, it might be simple for smaller communities.

The working group needs to determine which goals and objectives are the highest priority and which can be achieved within current fiscal and resource limitations and then develop action items and specific steps necessary to achieve every objective. In fact, most objectives in a management plan need alternative options because of changes in funding, personnel, and community concerns (Figure 1). Objectives can also be presented as alternatives or designed to accommodate several goals and contingencies. For example, three alternative objectives for removing hazard trees in order to achieve the goal of a wind-resistant urban forest are:

- **Objective 1**
 - Remove all hazard trees at once
 - This represents an improved efficiency and lower cost since work crews need to visit a neighborhood only once to remove undesirable trees. On the other hand, a significant portion of the canopy would be removed and this might upset residents who value these trees.

- **Objective 2**
 - Remove hazard trees and wind-prone species as opportunities become available
 - This gradual change to the canopy might be less disruptive to the community but it will be less efficient and cost more than Objective 1 because crews will need to visit a neighborhood several times to complete the objective before a hurricane affects the community.

- **Objective 3**
 - Leave hazard trees in place
 - This objective will prove catastrophically costly and inefficient if a storm strikes, but it may nevertheless be the most appealing to the community if it does not have any resources to allocate to tree removal.

As with most things in life, there will be trade-offs and these need to be assessed by the more specialized members of the working group (e.g. tree care specialists) and reviewed and accepted by the community. If the team and the community review the trade-offs together, there will be a greater chance of finding a compromise or solution acceptable to most of the community.

Assessing the Community’s Tree, Fiscal, and Human Resources

Most communities will need some information to help develop the vision, goals and objectives. Some key questions this information should answer are:

- What should the urban forest look like and provide for the community?
- How much urban forest do we want and need now and in the future?
- Why do we want to manage the urban forest?
- How will we respond in case of a hurricane?

The information needed for your plan can come from several sources (Letson, 2001). Historical records, lessons learned from past hurricanes, library resources, and other community groups can have tree-related...
information needed for developing your plan. Chapter 4—Restoring Trees after a Hurricane and Chapter 5—Lessons Learned from Hurricanes in this series can be especially useful for this. A systematic inventory of trees in your community is particularly useful for assessing, establishing, and measuring your goals and objectives. Keep in mind that data collection is expensive; measure only what is needed. Chapters 7 through 10 in this series and Miller (1997) will provide you with ideas for selecting appropriate trees including tree species, size, condition, location, growing space, and site history (see http://orb.at.ufl.edu/FloridaTrees/ for more information).

The working group needs to identify what information is necessary to accomplish the goals and objectives. This will help to identify problems and issues. But once the team has had community input, specialists should begin to lead the process (Figure 1). An urban forester or arborist on the team can determine what data to collect during an inventory to meet management objectives. Remember, there is no right or wrong type of assessment or inventory; this will depend on your community’s vision, goals, objectives, and resources.

Information on current or past management practices (e.g., pruning history) and canopy characteristics is also useful for developing your objectives. For example, Chapter 3—Assessing Hurricane-Damaged Trees and Deciding What to Do indicates that species suffering high branch loss during hurricanes will need pruning and long-term monitoring. Reviewing current practices (such as tree planting, pruning and removal) and plans (such as street tree management, emergency response plans, ordinances, etc.) can also identify common goals and help to explore ways to integrate efforts (Letson, 2001). The urban forester or arborist in the working group can assess tree risk and pruning programs and prioritize areas for tree removal.

A Lesson Learned

Hurricane Andrew (Figure 4) revealed that unwise urban forest composition and planting practices resulted in extensive and unnecessary urban forest loss and associated damage to property (Burban and Andersen, 1994). Additionally, in many cases more trees were damaged as a result of hurricane clean up. Trees were used as brace posts to load debris and natural areas, and undamaged trees were bulldozed to make room for debris and temporary housing. Lessons from past experiences such as these can be used to assess the history of your tree resources and provide your community with insights on what is likely to happen after a hurricane (Letson, 2001). Chapters 1 through 3 in this series present tree-related hurricane response activities you might expect after a hurricane; some of these recommendations can be included in your plan as objectives.

Figure 4

Hurricane effects on palms in southern Florida: Hurricane Wilma (top) and Hurricane Andrew (bottom).
The team needs to assess the resources available—people, funding, and time—to manage the urban forest. Unfortunately, many activities that need to be done to create a wind-resistant urban forest might not be feasible. For example, species listed in Chapter 8—Selecting Southeastern Coastal Plain Tree Species for Wind Resistance and Chapter 9—Selecting Tropical and Subtropical Tree Species for Wind Resistance might not be available, or initiating preventative pruning programs from Chapter 12—Developing a Preventive Pruning Program in Your Community: Young Trees and Chapter 13—Developing a Preventive Pruning Program in Your Community: Mature Trees might be limited by budgets. An assessment of your resources will identify what can and cannot be done, thus defining the scope of the plan and its timeline (Figure 1).

Resource assessment is a critical step because it identifies limitations as well as potential avenues to minimize those limitations. For example, if funding is a critical issue, the team may want to apply for an urban community forestry grant to help offset costs. Similarly, if personnel is a critical issue, the team may want to hire a consulting firm specializing in urban forestry to do the inventory and data synthesis. Planners and working group members with fiscal experience can help assess available fiscal and human resources.

The state and private forestry organization of the USDA Forest Service and State Forestry Agencies, in partnership with national and local organizations, provide financial and technical assistance to plan, protect, and manage trees. Most states have urban and community forestry grant programs that can be used to fund tree inventories, management plan development, and other activities. For more information see http://www.arborday.org/programs/urbanforesters.cfm.

After assessing your urban forest and community resources, review the management plan’s goals and objectives to ensure that they are still relevant in light of the information generated by your assessment or inventory (Figure 1).

Implementing the Goals and Objectives of the Plan

Once the community has selected objectives, it’s time to carry them out to meet the agreed-upon goals.

Implementation is a continuing process in the long-term care of the urban forest, and should not be seen as the "last step" of a finite project (Figure 1). All of the planning and building of consensus up to this point...
will help to ensure that the plan runs as smoothly as possible. But you should expect implementation to be an ongoing learning experience, and anticipate the need for contingency planning.

Some objectives can be achieved within a certain timeline, but this process needs to be updated regularly because your community, environment, resources and urban forest will change. Information from Chapters 4 through 13 of this publication series present several strategies that can be incorporated into your plan. In Florida, hurricane-prone areas are experiencing tremendous growth, and many new communities are being created every year. People and trees are constantly undergoing changes, and hurricanes will continue to strike Florida. It is essential for communities to plan as they grow to be in the best shape possible to withstand hurricanes. At this point in the urban forest management plan process, participation of team members representing emergency management services, public utilities, and municipal/county personnel is crucial.

It’s Important to Adapt Your Plan

The city of Plantation, Florida developed its urban forest management plan in 2003. A tree inventory of over 5,000 trees served as the baseline information for developing their goals and objectives (City of Plantation, 2003). However, the 2004-2005 hurricane seasons affected the city’s tree cover substantially. As a result, the inventory could no longer provide the information necessary for meeting the goals established in the plan. Rather than continuing with the original plan, the community will adapt their goals and objectives after conducting a new tree inventory. This type of change is inevitable and the ability to adapt is necessary in any hurricane-prone community.

Monitoring and Evaluating the Plan

During the implementation your plan, it will be necessary to establish procedures for monitoring and adapting your plan. A management plan should be viewed as a living document continually changing to reflect changes in resources and funding, and the needs of the community. In most existing urban forest management plans, monitoring is the most neglected step. Yet, it is one of the most critical elements of any plan because it will determine if the plan’s goals and objectives are being met.

Monitoring is the collection of information to determine if the plan’s goals and objectives are being met – in other words, is your plan effective? When monitoring the objectives and goals of your plan, the working group should ask the question “What are we doing to meet our goals and vision?” It is important to determine what your monitoring indicators or milestones will be. You can observe and collect information on many indicators. For instance, number of tree plantings, increases in tree cover, and number of trees pruned per year (use Chapters 11 through 13 to help you select indicators). Select indicators that are easily measured and repeatable so that the community can measure progress. Avoid collecting too much data and focus instead on the objective’s relevancy to your goals. Make your monitoring efforts as explicit and simple as possible, and be sure they are clear to everybody on the team (Figure 6).
Monitoring allows you to evaluate how well your activities are achieving your plan's objectives. Evaluate your monitoring information as a team, learn from other team members and modify or improve goals if necessary (Figure 1). Development of a management plan is a continual process and will not end with the writing of the plan. Monitoring will also provide feedback on how to improve your plan.

Evaluation May Mean Learning and Changing Your Plan

As part of their urban forestry management plan, the city of Charleston, South Carolina monitored and evaluated its tree maintenance operations. Charleston's urban forestry division's tree maintenance activities were compared to those of six other municipal forestry departments from other parts of the United States to determine how effectively the Charleston division was fulfilling its objectives (City of Charleston, 2000). Although Charleston was highly responsive to its citizens, it did not have a proactive pruning program. Initiating a proactive pruning program will allow the city to care for a greater number of trees and keep them maintained, reducing the need for “repair work” as the trees grow, which should in turn reduce the number of citizen complaints. Chapter 12 and 13 can be used to develop pruning program objectives in your plan.

The town of Leesburg, Virginia also evaluated its current tree management organization and determined that they needed to develop a clear urban forestry policy, improve the organizational structure and staffing levels, and provide adequate financial resources for urban forest management (Town of Leesburg, 2006).

Every community is different, and the task of balancing community needs with urban forest and budget needs is complex. But the results of monitoring and evaluation can also provide reasons to celebrate. Change is inevitable and not always bad. It's important to identify successes in your plan. When a milestone is met, this is reason to show the community the improvements to their environmental. Celebrate with press releases, arbor days, park openings and other publicity efforts to involve and educate the public. Keep in mind that a visible program results in more community support in both times of budget expansion and tightening.

Final Considerations

This publication series can provide you with a tool kit of information on how to develop and execute your urban forest management plan. Management is a continual process of learning and adapting to change (Figure 1). Reviewing the community management plan’s vision, goals, objectives, and activities should be an important and on-going component of any management plan. A plan and its vision should not have a shelf life of 5, 7 or 10 years. If the ecological, economic or social assumptions that directed the initial plan change or become questionable, then the plan needs to be adjusted to meet the new realities.

In the aftermath of a hurricane, the health of a community's trees is about the last thing on anyone's mind. Urban forests will be secondary to ensuring public safety, mitigating hazards to property, cleaning debris, and restoring public services and utilities (Burban and Andersen 1994). In fair weather, however, urban forests should be a primary community concern. Careful planning for the allocation of resources to the urban forest will provide a community with a healthy, strong, wind-resistant forest that will help it withstand a hurricane. This fact should remind you of the need to consider hurricanes during your planning process and in fact, it makes considering hurricanes in your plans critical.
Things to Remember:

- Objectives can have time lines but the plan itself should allow for change.
- A clear vision, community participation, monitoring, and the ability to adapt your plan for an eventual hurricane or other event is good fiscal policy and ensures the sustainability of the urban forest and its services.
- By considering the approaches and information presented in this chapter and integrating the tools from previous chapters, communities can develop objectives that will help prepare them to effectively respond to a hurricane.
- The lessons learned from previous hurricanes and the tools in this series can be used to design objectives that will help communities develop pre-hurricane goals, objectives, and activities and restore their urban forests after hurricanes.
- Success of an urban forest management plan will require the members of a community to cooperate with each other. Include on your team anyone with a stake in maintaining a healthy urban forest: public agencies, businesses, institutional landowners, green industry contractors, and emergency management services. Cooperation will create a common vision that values the urban forest and a community that works together to restore itself after a hurricane.

Other Sources of Information

Literature Cited

City of Pineville, 2006. Draft Community Forest Resources Analysis and Management Plan City of Pineville, Louisiana. PowerPoint provided by the City of Pineville, Louisiana.

Sample urban forest management plans, street tree master plans, and other documents

City of Davis, California
2002 Community Forest Management Plan

City of Miami Beach, Florida
Hurricane preparedness fact sheet

Georgia Forestry Commission
2001 Model urban forest book

City of Horn Lake, Mississippi
2004 Tree Inventory Management Plan

State of Mississippi

Charlotte, North Carolina
2005 City of Charlotte, North Carolina Municipal Forest Resources Analysis. USDA Forest Service

Knoxville, Tennessee
Knoxville: Street Tree Master Plan

New York City – Croton, New York
2004 Urban Forest Management Plan

New York City – Morrisciana, New York
2006 Community Forest Management Plan

New York City – Fort Greene Park, New York
2004 Urban Forestry Management Plan

New York City – East Harlem, New York
2006 Community Forestry Management Plan

City of Eugene, Oregon
1992 Urban Forest Management Plan

City of Lacey, Washington
2005 Urban Forest Management Plan

City of Seattle, Washington
Master Street Tree Plan and 2006 Draft Urban Forest Management Plan

Reviews

Mary Duryea, Ed Gilman, Eliana Kampf, Astrid Delgado, & Jenny Seitz, University of Florida, IFAS; John Pippoly, Broward County Extension, FL; Bill Hubbard, Southern Region Extension

Acknowledgements

Chris Shriver, City of Plantation, FL; Greg Howe, & Steve Graham, City of Tampa, FL; Joy Kline & Steve Duncan, Miami-Dade County, FL; Henry Mayer, Miami-Dade County Extension, FL; David Crane, Mark Torok, & Charlie Marcus, Florida Division of Forestry; Darren Green, City of Alexandria, LA; Rick Olson, MS Forestry Commission; Jerry Bond & Jennifer Goullick, Davey Resources Group; Mike Brunk, City of Urbana, IL; Danny Burbage, City of Charleston, SC; Pete Smith; Texas Forest Service; James Jackson, City of Valley, AL; Larry Figart; Duval County Extension, FL; Ricardo Guzman & Christopher Latt, City of Miami Beach, FL
Wind and Trees: Lessons Learned from Hurricanes

Mary L. Duryea and Eliana Kampf

Introduction
Hurricane-force winds can be extremely damaging to communities and urban forests. Without question, trees can become hazardous and pose risks to personal safety and property. As destructive as these storms are, it is important not to forget that trees provide many environmental benefits, such as providing shade and energy conservation, reducing the well known “heat island” effect in cities caused by concrete and pavement, and increasing property values. Also, there are opportunities to better prepare for the next hurricane season by rebuilding a healthy urban forest. Valuable lessons can be learned from knowing more about how, when, and why trees fail in storms. A key issue facing communities is how to manage the urban forest from an ecological standpoint so urban forests are healthier and more wind-resistant.

A healthy urban forest is composed of trees that maximize ecosystem benefits while being able to withstand natural and anthropogenic stresses and disturbances, such as wind from hurricanes and tropical storms, flooding, pollution, etc.

This fact sheet reports on the lessons learned from research conducted after 10 hurricanes by scientists at the University of Florida/Institute of Food and Agricultural Sciences (UF/IFAS). It also includes valuable field observations from professionals, such as urban foresters, scientists, and arborists.

Our goal is to promote a healthy and more wind-resistant urban forest. This publication is aimed at citizens and communities who seek to rebuild and set better urban forest management practices so that future storms are less devastating.

The Study
Since 1992, when Hurricane Andrew struck south Florida, researchers at UF/IFAS have been studying the impacts of hurricanes on the urban forest (Duryea et al. 1996). Hurricane wind damage to urban neighborhoods was measured again in 1995 when two hurricanes struck the Pensacola, FL area (Duryea 1997) and once more in 1998 when Hurricane Georges crossed over the entire island of Puerto Rico. In 2004, four hurricanes (Charley, Jeanne, Francis, and Ivan) struck Florida with maximum sustained winds ranging from 105 to 145 mph. In 2005, Hurricanes Dennis, Katrina, and Rita struck the Gulf Coast of the US (Figure 1).

The impacts of these hurricanes gave us the opportunity to study over 150 urban tree species and their comparable responses to hurricanes (Duryea et al. 2007).

Our goal was to answer the question, what makes a tree more wind resistant? Our main objective was to determine what biological, site, and cultural factors make trees more or less wind resistant. By evaluating these factors, we can understand the difference between species (i.e., whether they defoliate quickly in wind) and between certain practices (such as planting trees in groups compared to...
individual tree planting). This fact sheet describes the lessons and recommendations about the urban forest, trees (i.e. species and structure), and soil and rooting conditions.

I. Lessons about the Urban Forest

Lesson 1
THE HIGHER THE WIND SPEED OF THE HURRICANE, THE MORE LIKELY TREES WILL FAIL

In the 10 hurricanes we studied, we measured standing, leaning, or fallen trees in yards. Standing trees were considered survivors of the wind. Trees were considered not surviving if they had fallen or were leaning at less than a 45 degree angle.

From these numbers we calculated the percent of urban forest lost in each hurricane, which ranged from 11% in Hurricane Erin to 21% in Hurricane Rita to 23% in Hurricane Katrina to 38% in Hurricane Andrew (Figure 2). As wind speed increases, trees are more likely to suffer damage (i.e. uproot, break, or lean), resulting in greater urban forest loss, as the graph shows.

However, it is important to point out that in addition to wind intensity and speed, other factors influence urban forest damage during hurricanes:

- Conditions accompanying the hurricane, such as precipitation and the time it takes to move through an area
- Tree species, age, health, and structure
- Site characteristics, such as soil conditions (e.g., soil depth, water table, soil compaction) and soil composition
- Urban forest conditions, such as overall tree canopy density and composition

These factors together will determine whether a tree will fail during winds. Biological factors such as tree species, age, health and condition are related to the urban forest composition and structure. For example, Pensacola, FL has a denser tree canopy composed of older trees and these trees suffered considerably more damage during hurricanes when compared to Miami, FL, with less canopy cover and younger tree species.

Conditions accompanying the hurricane also influence tree fall. For instance, a slower-moving storm with a lot of precipitation will mean more water accumulating in the soil and less friction between roots and soil to hold trees up.

Trees growing in shallow soils, such as in Miami-Dade County with soils no more than 1 foot deep, will also behave differently from those planted in deeper soils. Trees in shallow soils are more prone to blow over than trees rooted more deeply.

RECOMMENDATION
Establish and manage a healthy urban forest to improve wind resistance by:

- Having a comprehensive tree management plan for your community.
- Beginning a structural pruning program for young and mature trees.
- Choosing more wind-resistant species.
- Selecting the right species and designing the right place.
- Planting high-quality trees with central leaders and good structure.
Lesson 2
TREES IN GROUPS SURVIVE WINDS BETTER THAN TREES GROWING INDIVIDUALLY

In Hurricanes Ivan and Jeanne, our research showed that trees growing in groups survived the winds better than individual trees (80% versus 70% in Hurricane Ivan, and 88% versus 78% in Hurricane Jeanne.) A group was defined as 5 or more trees, each growing within 10 feet of another tree, but not in a row, as shown in Figure 3.

Our research has also shown that the more rooting space trees have, the less likely they are to fail (see section Lessons Learned about Soil and Rooting Conditions for more details). Only if they have adequate soil space can trees develop a strong supporting root system.

RECOMMENDATION 1
Plant trees in groups of at least 5 trees (Figure 4) as opposed to individually (Figure 5).

RECOMMENDATION 2
Plant a variety of species, ages, and layers of trees and shrubs to maintain diversity in your community (Figure 6).

II. Lessons about Trees

Lesson 1
SOME SPECIES RESIST WIND BETTER THAN OTHERS

In our measurements of trees after 10 hurricanes, we have seen that some tree species are more resistant to wind than others. Wind resistance is defined as the ability or capacity of a tree to survive (remain standing and living)
hurricane-force winds, which means that they do not easily uproot or break in the winds.

One of the main objectives of this study was to develop lists of wind-resistant tree species. To complement our findings, we conducted a survey of arborists, scientists and urban foresters who ranked wind resistance of urban tree species they observed after hurricanes. We used these ratings along with our research results and the available scientific literature to classify broad-leaved, conifer, palm, and fruit tree species into highest, medium-high, medium-low and lowest wind resistance. The recommended tree species are divided into the Southeastern Coastal Plain region (including USDA hardiness zones 8 and 9) and Tropical and Subtropical regions (USDA hardiness zones 10 and 11).

RECOMMENDATION 1
Plant tree species that have been shown to be more wind resistant.

RECOMMENDATION 2
Consider removing over-mature and hazardous tree species that have demonstrated poor survival in hurricanes. This is especially true if trees are over-mature, endangering lives and property, and belong to the lowest wind resistance list. Some of these species can be seen below and include sand pine, pecan, laurel oak, and water oak in north Florida and queen palm, Australian pine, melaleuca, weeping banyan, and Washington palm in south Florida. For borderline species, consult a professional urban forester or a certified arborist.

RECOMMENDATION 3
When a tree fails, plant a new tree in its place. In the streets of Bagdad, Florida, laurel oaks such as the one on the house in the background are being replaced with more wind-resistant, longer-living street tree species, such as live oaks (Figure 7). The healthy urban forest this will create, with its mixture of young and mature trees, will provide benefits such as good canopy cover, diversity, and mitigation of high winds. When possible, remember to replace individual trees with groups of trees. Doing so can improve wind resistance.

ANOTHER FINDING: OAKS
When comparing survival of sand live oak, live oak, and laurel oak in 4 panhandle Florida hurricanes (Erin, Dennis, Opal, and Ivan), laurel oak had poorer overall survival than both live oak and sand live oak (Duryea et al. 2007) (Figure 8). However, in 2 south Florida hurricanes (Jeanne and Charley), both survival and branch loss for these oaks were similar. Speculations about the reasons for this lack of difference include: (1) Laurel oak in south Florida may be a different cultivar or variety than those in north Florida and (2) Sandier soils in south Florida and their accompanying lower site quality may result in laurel oaks with shorter heights or lower height-to-diameter ratio (as occurs between the north Florida and south Florida varieties of slash pine (Pinus elliottii var. elliottii and var. densa). Still, many authors point to live oak as a tree with strong wood and little failure in hurricanes (Touliatos and Roth 1971; Swain 1979; Hook et al. 1991; Barry et al. 1993).
RECOMMENDATION
Become familiar with the recommended tree species and how they perform in natural and urban ecosystems in your community. The same species in different locations may behave differently due to soils, climate, local disease problems, and other factors.

Lesson 2
AS A GROUP, PALM SPECIES SURVIVE HURRICANES BETTER THAN BROAD-LEAVED AND CONIFER TREES
When compared to broad-leaved and other conifer trees (such as pines), palms have often been observed to be more resistant to winds. Palms grow differently than other trees because they have one terminal bud. If that bud is not damaged, palms may lose all their fronds (leaves) and still survive. Our research shows that palms in the coastal plain and tropical and subtropical regions are often more resistant to winds (Figure 9). However, individual palm species do vary in their responses to wind. Examples would be queen and Washington palms which have exhibited poor survival in south Florida during hurricanes (Figure 10).

RECOMMENDATION 1
Consider planting wind-resistant palm species. Examples include sabal palm, Canary Island date palm, and manila palm.

RECOMMENDATION 2
Monitor palms carefully after storms. Bud damage may not show up immediately after the storm. Allow at least 6
months for palms to put out new fronds. Palms should also be checked for hidden root, stem, or bud damage.

Lesson 3
PINES MAY SHOW NO IMMEDIATE VISIBLE DAMAGE AFTER HURRICANES, BUT MAY DECLINE OVER TIME

In our study, we measured pines right after hurricanes, when they looked green and healthy (Figure 11). However, we went back 3 months after Hurricane Charley and found that 27% of the standing south Florida slash pines and 48% of the standing longleaf pines had died. Pines have been observed to be very sensitive to wind damage. They may show no immediate visible damage after high winds but may die sometime later. They can die slowly over a period of 6 months to 2 years after wind storms. Some may remain green for a year or more, and then suddenly turn yellow (Figure 12) and quickly progress to brown needles in a very short period. The causes of yellowing of the needles and pine death are not completely understood. It is likely due to hidden damage produced by bending and twisting during hurricane-force winds. Prolonged winds may also rupture smaller roots without breaking the larger support roots. The injured stems and roots are unable then to supply the water and nutrients needed in the crown, resulting in pine decline and death.

RECOMMENDATION
Monitor pines carefully. Sometimes there is hidden damage and the tree declines over time. Look for signs of stress or poor health. Check closely for insects. Weakened pines may be more susceptible to beetles and diseases.

Lesson 4
TREES THAT LOSE ALL OR SOME OF THEIR LEAVES IN HURRICANES ARE NOT NECESSARILY DEAD

The greater the wind speed, the more leaves trees lose during hurricanes, and leaf loss may help trees to survive. Trees can lose all or some of their leaves in most hurricanes. However, leaf loss does not mean the tree is dead; rather it means the tree is temporarily unable to photosynthesize (produce food) and store energy. With time, the tree will produce new leaves which are a sign of recovery, since they restore the tree's ability to photosynthesize and bring the tree back to health. Some species defoliate (lose leaves) easily during winds. Losing leaves may be a good strategy, helping the tree to better resist winds. Our research in Hurricane Ivan found that trees that lost their leaves survived the winds better. Live oak (in north Florida) (Figure 13) and gumbo limbo (in south Florida) are examples of trees which readily lose leaves and small branches and stand up well to winds.

RECOMMENDATION
Wait, watch for leaves, and monitor the tree's health. Most trees will leaf out again in a few months or in the spring of the following year. If the tree does not grow new leaves by the spring or early summer following the hurricane, it is not likely to recover. Note that some species, such as pines, may not recover if defoliated.
Lesson 5
NATIVE TREE SPECIES SURVIVED BETTER IN SOUTH FLORIDA HURRICANES (JEANNE, ANDREW, AND CHARLEY)

In our research, native trees survived better in south Florida hurricanes but not in north Florida (Hurricane Ivan) (Figure 14). Native species also lost fewer branches than exotic species in Jeanne (36% versus 21%) and Charley (39% versus 36%) in south Florida. Some of the exotic species with low survival in south Florida were melaleuca, Australian pine, and queen palm as compared to native species with high survival, such as live oak, gumbo limbo, and sabal palm. In tropical and subtropical areas, exotics represent a large proportion of the urban forest (for Hurricane Jeanne, exotics made up 38% of the trees in the urban forest, for Hurricane Charley, 42%, and for Hurricane Andrew, 64% were exotics). In the southeast coastal plains (Hurricane Ivan), exotic tree species make up 9% of the trees in the urban forest. The major exotic species were crape myrtle, Chinese tallow (a prohibited invasive species), camphor tree (an invasive species), Bradford pear, and palms such as pindo and Washington. These differences in the composition of the urban forest may explain why, with fewer exotics in their population, natives did not survive better in the coastal plain during Hurricane Ivan. Native trees also survived winds better in south Florida hurricanes when compared to Puerto Rico (Hurricane Georges) (Figure 15). Out of the 35 tree species measured in Puerto Rico, only 4 were native to the island. The lighter winds and conditions of Hurricane Georges showed no differences between native and exotic species.

RECOMMENDATION
Consider native tree species when selecting trees for planting. Native trees should receive strong consideration when selecting trees for the urban forest. Additional benefits of using native species include their values for wildlife and native ecosystem conservation.
Lesson 6
OLDER TREES ARE MORE LIKELY TO FAIL IN HURRICANES

As trees grow and age, they become more susceptible to insects and diseases, branches and parts of the tree begin to die, they become less flexible, and they may be more vulnerable to winds. Our research shows that larger and older trees lose more branches in hurricanes. Larger trees (40 to 79 inches in diameter) lost a greater percentage of their branches compared to small trees (less than 8 inches in diameter) (Figure 16). Every tree species has an inherent life span. Some tree species live longer than others (Table 1). It is important to keep in mind that risk of failure in wind increases with age. For example, the life span of laurel oak is 50 years; it begins to decay and show signs of diseases as it reaches 40 years. The older a tree gets, the greater the likelihood of diseases and pathogens, breakage during winds, and the greater the risk of it causing damage when it fails.

RECOMMENDATION 1
Consider life span when managing urban forests for wind resistance (Table 1).

RECOMMENDATION 2
Over-mature trees that present a hazard to people and property should be removed and replaced by new trees (Figure 17). These trees should be monitored regularly for structural defects. Consult with a certified arborist or urban forester.

Lesson 7
UNHEALTHY TREES ARE PREDISPOSED TO DAMAGE

Old trees with decayed root systems, stem decay, or large dead branches are vulnerable to hurricanes. Decay, a major cause of tree failure, is caused by fungi that weaken wood (Figure 18). Cracks, seams, butt swell, dead branch stubs and large, older wounds suggest internal decay. They can be weak points on a trunk and increase the likelihood of tree failure. Mushrooms at the base of the tree trunk might also indicate root problems. They can be the sign of Armillaria or other fungi that can decay roots, creating unstable trees (Figure 19). Root rot can be diagnosed with careful, regular inspections by qualified arborists.
RECOMMENDATION
Remove hazard trees before the wind does. Have a certified arborist inspect your trees for signs of disease and decay. They are trained to advise you on tree health.

Lesson 8
TREES WITH POOR STRUCTURE OR INCLUDED BARK ARE MORE VULNERABLE IN THE WIND
A tree with two or more trunks or stems of equal size originating from the same point on the tree is said to have co-dominant stems. Co-dominant stems may develop bark inclusions, which are weak unions between branches, and are very susceptible to breakage (Figure 20). To develop strong structure, trees need to be managed with structural pruning.

RECOMMENDATION 1
For a more wind-resistant, sustainable landscape, plant high-quality trees with central leaders and good form.

RECOMMENDATION 2
Follow with a preventive structural pruning program of young and mature trees.

Lesson 9
WELL-PRUNED TREES SURVIVE HURRICANES BETTER THAN POORLY PRUNED OR UNPRUNED TREES
Poor pruning practices, such as topping or removing large branches, make trees more susceptible to wind failure. Old, large pruning cuts can become an entry point for fungi that begin the decay process (Figure 21). In our study of Master Gardeners after Hurricane Andrew in 1992 (Duryea et al. 1996), we found that trees that had been pruned properly (not topped and with more open and well-distributed crowns) survived high winds better than unpruned trees (Figure 22). We re-analyzed this data using more broad-leaved tree species—black olive, gumbo limbo, bottlebrush, royal Poinciana, live oak, West Indian mahogany, and white cedar. Survival for pruned trees was 73% compared to 47% for unpruned trees, showing that overall, pruned trees are less likely to fail in hurricanes.

RECOMMENDATION 1
Begin a preventive pruning program for both young and mature trees. The main goal of preventive pruning is to reduce the length of branches competing with the main trunk.

RECOMMENDATION 2
Select the right tree for the right location to avoid poor pruning practices. To allow healthy crown development, plant considering the aerial space needed for a mature-sized tree (Figure 23). Under power lines, the preferred option is to plant smaller trees that will better fit the space (Figure 24).
III. Lessons about Soil and Rooting Conditions

Lesson 1
TREES WITH MORE ROOTING SPACE SURVIVE BETTER

The most important factor in designing a healthy urban landscape is also probably the one most often overlooked—that is providing enough soil space for tree roots to grow. In Hurricane Georges (Puerto Rico), we measured rooting space for trees and found that with more rooting space, tree survival during winds was higher (Table 2).

Soil should provide plenty of open space to allow growth of the trunk and development of the main flare roots. To provide anchorage for the tree, roots need to spread beyond the edge of the canopy and grow deep into the soil. Sidewalks, curbs, buildings, parking lots, driveways, and other urban structures restrict root development. A strong supporting root system with adequate rooting space is the most critical factor to the ability of trees to withstand hurricane-force winds in urban landscapes.

RECOMMENDATION
Give trees enough rooting space based on their mature size:

- Small trees need at least 10 feet by 10 feet.
- Medium trees need 20 feet by 20 feet.
- Large trees need at least 30 feet by 30 feet.

Lesson 2
GOOD SOIL PROPERTIES, SUCH AS ADEQUATE SOIL DEPTH, A DEEP WATER TABLE, AND NO COMPACTION, HELP WIND RESISTANCE

Trees without deep roots can become unstable and fall over in strong winds. Trees in shallow soils are more likely to blow over than trees rooted more deeply (Figure 25). Trees planted in compacted soil grow very poorly and are weak and unhealthy. This is especially true when the soil is poorly drained or the water table is high (Figure 26).

RECOMMENDATION 1
Make sure that planting sites have 3 feet of soil depth with a deep water table to allow healthy root system development.

RECOMMENDATION 2
Keep soil compaction to a minimum.
Lesson 3
DAMAGED ROOT SYSTEMS MAKE TREES VULNERABLE IN THE WIND

Roots anchor the tree. It is important that roots under the canopy are not cut because many roots are located just below the surface of the soil. Tree roots need to extend out from a tree in all directions in order to stabilize it against wind throw. When roots under the canopy are cut, trees are more predisposed to falling over (Figure 27).

RECOMMENDATION
Do not damage or cut main support roots during construction. Never cut roots closer than the distance of 5 times the trunk diameter. Be aware that when tree roots are cut, the anchoring system of the tree may be harmed and compromised.

IV. Final Considerations
A healthy and more wind-resistant urban forest depends on managing existing trees well, and, at the same time, establishing new trees properly. Follow these recommendations when managing older trees or planting new trees.

Older Tree Management
- Consider life span when managing urban forests for wind resistance. Over-mature trees should be removed and replaced by new trees.
- Remove hazard trees before the wind does. Have a certified arborist inspect your trees for signs of disease and decay in trees.
- Consider removing tree species that have demonstrated poor survival in hurricanes, especially if they are over-mature and endangering lives and property.
- Be careful not to damage or cut main support roots during construction. Be aware that when the tree roots are cut, the anchoring system of the tree may be harmed and compromised.
- Establish a preventive structural pruning program of both young and mature trees.

Planting
- When a tree fails, plant a new tree in its place.
- Plant tree species that have been shown to be more wind resistant.
• To reduce your risk, maintain diversity in your yard and community by planting a mixture of species, ages and layers of trees and shrubs.

• Plant trees in groups as opposed to individually.

• Give trees enough rooting space based on their mature size: small trees need at least 10 feet by 10 feet, medium trees 20 feet by 20 feet, and large trees 30 feet by 30 feet.

• To allow healthy root system development, make sure that planting sites have 3 feet of soil depth with a deep water table. Keep soil compaction to a minimum.

• To allow healthy crown development (instead of misshapen pruning) under power lines, plant small trees such as buttonwood, dogwood, crape myrtle, and wax myrtle.

• For a more wind-resistant, sustainable landscape, plant high-quality trees with central leaders and good form. Begin a structural pruning program for young trees.

References

Table 1.

<table>
<thead>
<tr>
<th>Life Spans of Tree Species in the Forest*</th>
<th>Short-lived (<50 years old)</th>
<th>Medium Lived (50-100 years old)</th>
<th>Long-lived (>100 years old)</th>
</tr>
</thead>
<tbody>
<tr>
<td>laurel oak</td>
<td>African tuliptree</td>
<td>live oak</td>
<td></td>
</tr>
<tr>
<td>red bud</td>
<td>paradise tree</td>
<td>sweetgum</td>
<td></td>
</tr>
<tr>
<td>bottle brush</td>
<td>red maple</td>
<td>southern magnolia</td>
<td></td>
</tr>
<tr>
<td>Hong-Kong orchid tree</td>
<td>gumbo limbo</td>
<td>baldcypress</td>
<td></td>
</tr>
<tr>
<td>jacaranda</td>
<td>sea grape</td>
<td>mahogany</td>
<td></td>
</tr>
</tbody>
</table>

*Note: Trees in urban areas have shorter life spans than trees in the forest.

Table 2.

<table>
<thead>
<tr>
<th>Rooting Space and Survival Rate</th>
<th>Tree Location</th>
<th>Survival Rate</th>
<th>Rooting Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Streets</td>
<td>64%</td>
<td>0 to 3 m²</td>
</tr>
<tr>
<td></td>
<td>Parking lots</td>
<td></td>
<td>(0 to 39 ft²)</td>
</tr>
<tr>
<td></td>
<td>Yards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yards</td>
<td>73%</td>
<td>4 to 7 m²</td>
</tr>
<tr>
<td></td>
<td>Parks</td>
<td></td>
<td>(40 to 75 ft²)</td>
</tr>
<tr>
<td></td>
<td>Campuses</td>
<td>91%</td>
<td>> 7 m²</td>
</tr>
<tr>
<td></td>
<td>Parks</td>
<td></td>
<td>(>75 ft²)</td>
</tr>
<tr>
<td></td>
<td>Yards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Southeastern Coastal Plain Tree Species

<table>
<thead>
<tr>
<th>Highest Wind Resistance</th>
<th>Medium-High Wind Resistance</th>
<th>Medium-Low Wind Resistance</th>
<th>Lowest Wind Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carya floridana, Florida scrub hickory</td>
<td>Acer saccharum, Florida sugar maple</td>
<td>Acer negundo, box elder</td>
<td>Carya illinoensis, pecan</td>
</tr>
<tr>
<td>Cornus florida, dogwood</td>
<td>Acer palmatum, Japanese maple</td>
<td>Acer rubrum, red maple</td>
<td>Liriodendron tulipifera, tulip poplar</td>
</tr>
<tr>
<td>Ilex cassine, dahoon holly</td>
<td>Betula nigra, river birch</td>
<td>Acer saccharinum, silver maple</td>
<td>Prunus caroliniana, Carolina laurel cherry</td>
</tr>
<tr>
<td>Ilex glabra, inkberry</td>
<td>Carpinus caroliniana, ironwood</td>
<td>Celtis laevigata, sugarberry</td>
<td>Pyrus calleryana, Bradford pear</td>
</tr>
<tr>
<td>Ilex opaca, American holly</td>
<td>Carya glabra, pignut hickory</td>
<td>Celtis occidentalis, hackberry</td>
<td>Quercus falcata, southern red oak</td>
</tr>
<tr>
<td>Ilex vomitoria, yaupon holly</td>
<td>Carya tomentosa, mockemut hickory</td>
<td>Cinnamomum camphora, camphor<sup>a</sup></td>
<td>Quercus laurifolia, laurel oak</td>
</tr>
<tr>
<td>Lagerstroemia indica, crape myrtle</td>
<td>Carya tomentosa, mockemut hickory</td>
<td>Eriobotrya japonica, loquat<sup>b</sup></td>
<td>Quercus nigra, water oak</td>
</tr>
<tr>
<td>Magnolia grandiflora, southern magnolia</td>
<td>Diospyros virginiana, common persimmon</td>
<td>Eucalyptus cinerea, silver dollar eucalyptus</td>
<td>Sapium sebiferum, Chinese tallow<sup>a</sup></td>
</tr>
<tr>
<td>Quercus geminata, sand live oak</td>
<td>Magnolia virginiana, sweetbay magnolia</td>
<td>Fraxinus pennsylvanica, green ash</td>
<td>Ulmus parvifolia, Chinese elm</td>
</tr>
<tr>
<td>Quercus laevis, turkey oak</td>
<td>Magnolia x soulangiana, saucer magnolia</td>
<td>Morus rubra, red mulberry</td>
<td></td>
</tr>
<tr>
<td>Quercus myrtiflora, myrtle oak</td>
<td>Nyssa aquatica, water tupelo</td>
<td>Myrica cerifera, wax myrtle</td>
<td></td>
</tr>
<tr>
<td>Quercus virginiana, live oak</td>
<td>Nyssa sylvatica, black tupelo</td>
<td>Persea borbonia, redbay</td>
<td></td>
</tr>
<tr>
<td>Podocarpus spp, podocarpus</td>
<td>Ostrya virginiana, American hophombeam</td>
<td>Platanus occidentalis, sycamore</td>
<td></td>
</tr>
<tr>
<td>Vaccinium arboreum, sparkleberry</td>
<td>Prunus angustifolia, chickasaw plum</td>
<td>Prunus serotina, black cherry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quercus michauxii, swamp chestnut</td>
<td>Quercus alba, white oak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quercus shumardii, Shumard oak</td>
<td>Quercus phellos, willow oak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quercus stellata, post oak</td>
<td>Salix x sepulcralis, weeping willow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulmus alata, winged elm</td>
<td>Ulmus americana, American elm</td>
<td></td>
</tr>
</tbody>
</table>

Conifers			
Taxodium distichum, baldcypress	Pinus elliottii, slash pine	Pinus elliottii, slash pine	Juniperus silicicola, southern red cedar
Taxodium ascendens, pondcypress	Pinus palustris, longleaf pine	Pinus palustris, longleaf pine	x Cupressocyparis leylandii, Leyland cypress

Palms			
Butia capitata, pindo or jelly	Washingtonia robusta, Washington fan		
Phoenix canariensis, Canary Island date			
Phoenix dactylifera, date			
Sabal palmetto, cabbage, sabal			

^a Prohibited in Florida
^b Invasive, not recommended in Florida
^c Caution: manage to prevent escape in Florida (Fox et al. 2005)

We present these lists with the caveat that no tree is perfectly wind-proof and that many other factors contribute to wind resistance including soil conditions, wind intensity, previous cultural practices, tree health and age. These lists do not include all trees that could be wind resistant. They list those species encountered during our studies in large enough numbers to run statistical comparisons.
Table 4.

<table>
<thead>
<tr>
<th>Tropical/Subtropical Tree Species</th>
<th>Highest Wind Resistance</th>
<th>Medium-High Resistance</th>
<th>Medium-Low Resistance</th>
<th>Lowest Wind Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursera simaruba, gumbo limbo</td>
<td>Annona glabra, pond apple</td>
<td>Acer rubrum, red maple</td>
<td>Casuarina equisetifolia, Australian pine<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Carya floridana, Florida scrub hickory</td>
<td>Calophyllum calaba, Brazilian beautyleaf</td>
<td>Bauhinia blakeana, Hong-Kong orchid</td>
<td>Cassia fistula, golden shower</td>
<td></td>
</tr>
<tr>
<td>Cordia sebestena, geiger tree</td>
<td>Chrysophyllum oliviforme, satinleaf</td>
<td>Bucidas buceras, black olive</td>
<td>Chorisia speciosa, floss-silk tree</td>
<td></td>
</tr>
<tr>
<td>Eugenia axillaris, white stopper</td>
<td>Coccoloba uvifera, sea grape</td>
<td>Callistemon spp, bottlebrush</td>
<td>Ficus benjamina, weeping banyan</td>
<td></td>
</tr>
<tr>
<td>Eugenia confusa, redberry</td>
<td>Coccoloba diversifolia, pigeon plum</td>
<td>Cinnamomum camphora, camphor<sup>b</sup></td>
<td>Grevillea robusta, silk oak</td>
<td></td>
</tr>
<tr>
<td>Eugenia foetida, boxleaf stopper</td>
<td>Liquidambar styraciflua, sweetgum</td>
<td>Delonix regia, royal poinciana<sup>c</sup></td>
<td>Jacaranda mimosifolia, j cacaranda</td>
<td></td>
</tr>
<tr>
<td>Guaiacum sanctum, lignum vitae</td>
<td>Lyssoloma latifolia, wild tamarind</td>
<td>Enterolobium cyclocarpum, ear tree</td>
<td>Melaleuca quinquenervia, melaleuca<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Ilex cassine, dahoon holly</td>
<td>Magnolia virginiana, sweetbay magnolia</td>
<td>Ficus aurea, strangler fig</td>
<td>Quercus nigra, water oak</td>
<td></td>
</tr>
<tr>
<td>Krugiodendrum ferreum, ironwood</td>
<td>Nyssya sylvatica, black tupelo</td>
<td>Kigelia pinnata, sausage tree</td>
<td>Peltophorum pterocarpa, yellow poinciana</td>
<td></td>
</tr>
<tr>
<td>Lagerstroemia indica, crape myrtle</td>
<td>Sideroxylon foetidissimum, mastic</td>
<td>Myrica cerifera, wax myrtle</td>
<td>Prunus caroliniana, Carolina laurelcherry</td>
<td></td>
</tr>
<tr>
<td>Magnolia grandiflora, southern magnolia</td>
<td>Simarouba glauca, paradise tree</td>
<td>Persea borbonia, redbay Platanus occidentalis, sycamore</td>
<td>Sapium sebiferum, Chinese tallow<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>Podocarpus spp, podocarpus</td>
<td>Swietenia mahagonia, mahogany</td>
<td>Quercus laurifolia, laurel oak</td>
<td>Spathodea campanulata, African tuliptree</td>
<td></td>
</tr>
<tr>
<td>Quercus virginiana, live oak</td>
<td>Tabebuia heterophylla, pink trumpet tree</td>
<td>Tabebuia caraiba, silver trumpet tree</td>
<td>Tabebuia caraiba, silver trumpet tree</td>
<td></td>
</tr>
<tr>
<td>Quercus giminata, sand live oak</td>
<td>Terminalia catappa, tropical almond<sup>d</sup></td>
<td>Ulmus parvifolia, Chinese elm</td>
<td>Ulmus parvifolia, Chinese elm</td>
<td></td>
</tr>
</tbody>
</table>

Conifers

| Taxodium ascendens, pondcypress | Pinus elliottii, slash pine | Araucaria heterophylla, Norfolk Island pine |
| Taxodium distichum, baldcypress | Pinus palustris, longleaf pine | x Cupressocyparis leylandii, Leyland cypress |

Palms

Butia capitata, pindo or jelly	Caryota mitis, fishtail	Syagrus romanzoffiana, queen^f
Dypsis lutescens, areca	Cocos nucifera, coconut	Washingtonia robusta, Washington fan
Coccothrinax argentata, Florida silver	Dypsis decaryi, triangle	
Tropical/Subtropical Tree Species

<table>
<thead>
<tr>
<th>Fruit Trees</th>
<th>Litchi chinensis, lychee</th>
<th>Averrhoa carambola, starfruit, carambola</th>
<th>Mangifera indica, mango</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prohibited in Florida</td>
<td>Invasive, not recommended in Florida</td>
<td>Caution: manage to prevent escape in Florida (Fox et al. 2005)</td>
</tr>
</tbody>
</table>

We present these lists with the caveat that no tree is perfectly wind-proof and that many other factors contribute to wind resistance including soil conditions, wind intensity, previous cultural practices, tree health and age. These lists do not include all trees that could be wind resistant. They list those species encountered during our studies in large enough numbers to run statistical comparisons.
Hurricanes Erin and Opal swept across the Florida Panhandle in 1995 bringing with them sustained winds of 85 and 125 mph. In two surveys immediately following the hurricanes, 25 neighborhoods were inventoried for tree damage. This circular summarizes the results of our surveys and ranks the wind resistance of the North Florida tree species in these communities. Hurricane-susceptible communities should consider wind resistance as one of their criteria in tree species selection.

Introduction

When hurricanes strike land, along with damage to property such as houses, power lines, and commercial buildings, they may cause damage to trees in the urban forest. Yet, sometimes a fallen tree may be side-by-side with one which is standing and appears unaffected by the winds. This varied wind resistance by different trees may be due to many factors such as tree age, size, health, and species.

In 1995 two hurricanes impacted the Florida Panhandle. The first, on August 3, was Erin, a slow-moving hurricane which struck the Pensacola area with sustained winds of 85 mph. Two months later, on October 4, Opal moved through the Ft. Walton Beach area more quickly and had sustained winds of 125 mph. Three days after each hurricane we surveyed the damage to trees in neighborhoods where the eye of the hurricane had passed.

Methods

After Hurricane Erin, 12 neighborhoods in the Pensacola area—and after Hurricane Opal—10 neighborhoods near Ft. Walton Beach were inventoried for tree damage Figure 1.

All trees along the neighborhood transects were observed and the following information was recorded:

1) Has the tree fallen? 2) If the tree fell, was it uprooted—or broken at the main stem? 3) If the tree fell, did the tree cause damage to property and if so, what kind of damage? 4) If the tree was still standing, did it have crown damage?
Results

What tree species fell?

Erin and Opal. Observations were obtained for 2,443 trees after Hurricane Erin and 2,468 trees after Hurricane Opal. Of the 4,911 surveyed trees, 11% fell in Erin and 13% as a result of Opal. Results are presented for 17 species which had a sample size greater than 14 trees in each hurricane. All except one species—Chinese tallow or popcorn tree *Sapium sebiferum*—were native to Florida.

Of the conifer species affected by both hurricanes, sand pine *Pinus clausa* exhibited poor wind resistance with only 61% and 58% standing after these two hurricanes, see Figures 2a, 2b, 2c, and 3.

Note in Figures 2a–2c, numbers in parentheses denote the number of trees observed in Erin and Opal, respectively.

Of the conifer species affected by both hurricanes, slash pine *Pinus elliottii* var. *elliottii* and longleaf *Pinus palustris* pines survived the winds best Figure 2a.

Southern red cedar *Juniperus silicicola* was one of two species damaged inconsistently during the two hurricanes:

92% were still standing after Erin compared to 60% after Opal Figure 2a.

Of the oaks and maples, sand live oak *Quercus geminata*, live oak *Quercus virginiana* and silver maple *Quercus saccharinum* did the best with laurel oak *Quercus laurifolia*, turkey oak *Quercus laevis*, and red maple *Acer rubrum* comprising a less wind resistant group Figure 2b. Of the other dicot (broadleaf) trees, dogwood *Cornus florida*, magnolia *Magnolia grandiflora*, and pecan *Carya illinoensis* survived the hurricane best while Chinese tallow and sweetgum *Liquidambar styraciflua* comprised a second group and Carolina laurelcherry *Prunus caroliniana* held up poorly to the winds Figure 2c.

Five species were sampled in only one of the two hurricanes and so the results are preliminary for:

- pignut hickory (*Carya glabra*), 100%;
- pindo palm (*Butia capitata*), 97%;
- sweet bay (*Magnolia virginiana*), 97%;
- sycamore (*Platanus occidentalis*), 92%; and
Results from Other Hurricanes. After Hurricane Camille (1969) forestland trees were ranked for their wind resistance and live oak was at the top of the list 6, 7. Live oak also did well in our study and after Hurricane Andrew 2. Sabal palm was the second most wind-resistant tree in Hurricane Camille and the only tree that was “immune to hurricane-force winds” of Hugo in 1989 3, 6, 7. Both live oak and sabal palm survived the 145 mph winds of Andrew and then did well in this study after Erin and Opal 2. Pecan was reported as the least wind-resistant tree species during Hurricane Camille 6, 7, yet in this study it survived the winds well. Three possible explanations for this different ranking could be:

1) Pecan is more exposed in orchards compared to neighborhoods; 2) Pecan does not tolerate winds greater than Erin and Opal; or 3) Our sample was too small (60 trees). Homeowners should be aware that pecan in urban settings may not be tolerant to stronger winds.

In forests during Camille 6,7, dogwood was reported to be more easily uprooted, yet in our study in neighborhoods 100% and 96% of the dogwoods were still standing.

Southern Pines

Over the years, hurricanes such as Camille, Frederick, Hugo and Andrew have helped people observe effects of hurricane-force winds on southern pines in forests and urban areas. Pines have most often been placed relatively low on hurricane-resistance lists due to their propensity for stem breakage 1, 2, 6, 7.

Hurricane damage to pine trees can also initiate outbreaks of pests such as bark beetles, ambrosia beetles, sawyers, and blue stain fungi that preferentially attack stem-damaged pines.

Example: After Hurricane Andrew in 1992, many individual pines did not show immediate damage but died during the following year.

Therefore, even though high percentages of slash and longleaf pines were standing after Hurricanes Erin and Opal, their ability to survive hurricane level stresses may be less than other species with the same percentage of trees still standing.

How did trees fall?

When trees fell, they were either uprooted or broken at the trunk Table 1. Uprooting was the most common type of failure for slash and sand pines—while longleaf pine exhibited both kinds of damage—and southern red cedar most often broke off at the main stem. Laurel oak was uprooted as compared to Chinese tallow which has a weak stem that snapped in two in the strong winds.

Crown Damage

Some species, still standing after the hurricanes, exhibited crown damage. Crown damage was defined as greater than 50% of the branches in the crown broken. Southern pines, oaks, palms, and dogwood all had little crown damage (less than 2% of the trees). Magnolia, pecan, red maple and Chinese tallow were in the next group with some damage (less than 10%) in one of the hurricanes Table 2.

The most crown damage appeared on Southern red cedar, sycamore, silver maple, and sweetgum. Southern red cedar, sycamore, red maple and pecan were also considered susceptible to breakage in forests after Hurricane Camille. Although sweetgum was considered resistant in Hurricane Camille 6,7, in our study sweetgum suffered the highest crown damage of all species in hurricanes Erin and Opal 20% of the trees.

PROPERTY DAMAGE

Twenty-one percent and 8% of the fallen trees damaged property in Erin and Opal. (Of all the trees surveyed, just 2% and 1% damaged property.) Homes accounted for 67% and 29% of the damage in each of the hurricanes; the rest was damage to minor structures such as signs, fences and sidewalks.

In the study made after Hurricane Andrew, only 18% of the fallen trees damaged property and of the total trees in the survey only 7% damaged property 2.

As would be expected, species that grow into large trees were more likely to cause property damage than small trees. Sand, slash, and longleaf pines and laurel oaks were more likely to cause damage if they fell than the smaller Southern red cedar, Carolina laurelcherry, and Chinese tallow Table 3.

Conclusions

Wind-Resistant Species

Using survey data we ranked tree species according to their wind resistance Table 4.
As expected, some species appear to be better-suited for use in hurricane-prone areas than others. Dogwood, sand live oak, live oak, sabal palm, and Southern magnolia are native trees that appear to tolerate hurricane-force winds extremely well.

Less wind-resistant are laurel oak, turkey oak, Chinese tallow, and red maple. Southern red cedar, sweetgum, and silver maple all appear to have crowns which are easily damaged by the winds.

Longleaf and slash pines, although standing up to the winds, receive their lesser wind-resistant rating because of their predisposition to insects and disease after experiencing hurricane-force winds.

Carolina laurelcherry and sand pine are the least wind-resistant species. Because of Carolina laurelcherry’s smaller stature, it is less of a threat to property than sand pine. Sand pine should not be planted or allowed to grow to a large size near any dwelling; its shallow root system appears to make it extremely vulnerable to wind.

Need for More Information

For several reasons our wind-resistant lists are preliminary and need more observation and study.

First, several commonly planted species—such as loblolly pine, sycamore, and sweet bay—have been under-studied and cannot be placed on the appropriate list until we have more data on them.

For other species—such as water oak *Quercus nigra* we had too small a sample to report, yet observations after Hugo reported that they were “all too aware of this tree’s failure to survive the storm in an urban environment” 4. We also have very little information on bald cypress *Taxodium distichum* and pond cypress *Taxodium distichum* var. *nutans* although they are reported to be extremely wind-resistant 5, 6, 7. We need more information on these species to continue to upgrade the lists.

Second, the winds of Hurricanes Erin and Opal (with 85 and 125 mph sustained winds) were not as strong as Hurricanes Camille, Frederick, Hugo, and Andrew (all greater than 135 mph). In Andrew, for example, 38% of the trees died as compared to Erin and Opal with losses of 11 and 13%. Also, in Andrew almost every tree had crown damage compared to relatively little crown damage from Erin and Opal. In Charleston, Hugo destroyed up to 45% of all landscape trees 3. It is because of the preliminary nature of these results, we urge you to use these lists as a starting point for forming a list based on your observations.

Cultural Practices

Site conditions in urban areas may often hinder good tree growth and tree health. All too often trees are planted where they have little rooting space or the soil is compacted. In contrast, adequate soil depth, lack of soil compaction, a deep water table, and adequate rooting space improve root system development and anchorage which contribute to wind firmness.

Also, maintaining healthy trees is critical to reducing damage in hurricanes. Our Hurricane Andrew study data showed that pruning can improve wind resistance and reduce tree failure 2. However, pruning does not include the practice of topping which misshapes and destroys branching structure, nor does it include excessive crown thinning.

To create and maintain healthy urban forests, sound cultural practices should be observed in tree selection, location and maintenance—while property owners and communities should seek advice from certified arborists and remove hazard trees immediately.

Education

It is common after a hurricane for urban citizens to decide that trees are a problem and are undesirable in urban areas due to their damage potential. In this study we found only 1 to 2% of the trees studied caused damage to property. While damage is undesirable at any level, impact on property can be balanced against the many other benefits of urban trees including energy conservation, reduction of stormwater runoff, wildlife habitat, and beauty.

In addition to proper species selection, programs to teach urban citizens more about proper tree care, selection, and maintenance can contribute to an urban forest with greater tolerance to hurricanes and storms.

Literature Cited

Table 1. Failure type associated with fallen trees. (*Numbers in parentheses denote the number of fallen trees in Erin and Opal combined.*)

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>% Broken</th>
<th>% Uprooted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carolina Cherry (33)</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>Chinese tallow (27)</td>
<td>81</td>
<td>19</td>
</tr>
<tr>
<td>Laurel oak (59)</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>Longleaf pine (32)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Sand pine (263)</td>
<td>22</td>
<td>78</td>
</tr>
<tr>
<td>Slash pine (44)</td>
<td>34</td>
<td>66</td>
</tr>
<tr>
<td>Southern red cedar (32)</td>
<td>63</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 2. Tree species with Crown Damage > 5% after either 1995 panhandle Hurricane.

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>% after Erin</th>
<th>% after Opal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese tallow</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Magnolia</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Pecan</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Red maple</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Southern red cedar</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Sycamore</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Silver maple</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Sweetgum</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 3. Percentage of fallen trees (large-size species v. small-size species) causing property damage. (*Numbers in parentheses denote combined felled trees in Erin and Opal combined.*)

<table>
<thead>
<tr>
<th>Large Species</th>
<th>% damaging property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurel oak (59)</td>
<td>17</td>
</tr>
<tr>
<td>Longleaf pine (32)</td>
<td>18</td>
</tr>
<tr>
<td>Sand pine (263)</td>
<td>11</td>
</tr>
<tr>
<td>Slash pine (44)</td>
<td>17</td>
</tr>
<tr>
<td>Small Species</td>
<td>% damaging property</td>
</tr>
<tr>
<td>Carolina Laurelcherry (33)</td>
<td>2</td>
</tr>
<tr>
<td>Chinese tallow (27)</td>
<td>4</td>
</tr>
<tr>
<td>Southern Red Cedar (32)</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 4. Wind resistance of tree species growing in the Florida Panhandle as determined by frequency of failure in Hurricanes Erin and Opal and other rankings from Hurricanes Camille and Andrew (2, 6, 7).

<table>
<thead>
<tr>
<th>Most Wind-Resistant</th>
<th>Less Wind-Resistant</th>
<th>The worst</th>
<th>Still a Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogwood</td>
<td>Chinese tallow (popcorn tree)<sup>1</sup></td>
<td>Carolina laurelcherry</td>
<td>Loblolly pine (82%)</td>
</tr>
<tr>
<td>Live oak</td>
<td>Laurel oak</td>
<td>Sand pine</td>
<td>Pignut hickory (100%)</td>
</tr>
<tr>
<td>Sabal palm</td>
<td>Longleaf pine<sup>2</sup></td>
<td></td>
<td>Pindo palm (97%)<sup>1</sup></td>
</tr>
<tr>
<td>Sand live oak</td>
<td>Pecan<sup>3</sup></td>
<td></td>
<td>Sweet bay (97%)</td>
</tr>
<tr>
<td>Southern magnolia</td>
<td>Red maple</td>
<td></td>
<td>Sycamore (92%)<sup>4</sup></td>
</tr>
</tbody>
</table>

¹ An exotic species
² Pest problems after storms lower these rankings
³ Low ranking due to previous hurricanes low ranking
⁴ Weak crown
⁵ Very weak crown
⁶ Not enough urban data
Introduction

Wind damage to urban trees increases with storm intensity, but not all tree species withstand high winds the same way, making some trees better choices than others for including in coastal landscapes. A team of scientists at the University of Florida/Institute of Food and Agricultural Sciences (UF/IFAS) has been tracking and studying major hurricanes since Hurricane Andrew in 1992 to determine their effect on the urban forest. One of the major goals of this study is to assemble lists of relative wind resistance for different urban tree species. These lists can assist communities to better prepare for future hurricane seasons and to rebuild a healthy urban forest by selecting proper species. This fact sheet presents the research and methodology that lead to these lists of relative wind resistance. It also discusses in detail the results and additional recommendations for selecting and establishing trees for a healthier and more wind-resistant urban forest.
I. The Study

In 2004, four hurricanes struck Florida with maximum sustained winds ranging from 169 to 233 km/h (105 to 145 mph). In 2005, Hurricane Dennis struck the Florida panhandle at 193 km/h (120 mph). The impacts of these five hurricanes were widespread. They affected urban areas, agricultural croplands and Florida’s natural ecosystems (Duryea et al. 2007). Since 1992 when Hurricane Andrew struck south Florida, we have been studying the impacts of hurricanes on the urban forest (Duryea et al. 1996). We continued with measurements of hurricane wind damage to urban neighborhoods again in 1995 when two hurricanes struck the Pensacola area (Duryea 1997) and then again in 1998 when Hurricane Georges crossed over the entire island of Puerto Rico. These nine hurricanes with their varied wind speeds gave us the opportunity to study over eighty tree species and their comparable responses to hurricanes. This study reports on the relative wind resistance of southeastern coastal plain species in urban forests (including hardiness zones 8 and 9).

II. Methods

Urban Tree Damage Measurements

Urban tree damage was measured within three to six days following each hurricane that struck the Florida panhandle: Erin, Opal, Ivan and Dennis (Figure 1).

We also report the hurricane response of coastal plain species such as live oak (*Quercus virginiana*) and sabal palm (*Sabal palmetto*) that occur throughout Florida and were impacted by Hurricanes Andrew, Charley, Frances, and Jeanne. Hurricane Andrew results were collected in a survey of 128 homeowners in Dade County, Florida who reported the impacts of the hurricane on trees in their yards (Duryea et al. 1996). The methodology for the other eight hurricanes was the same and was as follows. Neighborhoods at the point of landfall of the hurricane were randomly chosen on the strong side of the storm. For each neighborhood, all trees in front yards were observed along street transects. (If invited, we also measured trees in backyards.) Overall we sampled 100 neighborhoods and 18,200 trees. Each tree's diameter at breast height (for dicots and conifers) or height (for palms) was measured (estimated for height) and then it was determined if the tree was standing, leaning or had fallen. Leaning trees were those that were leaning as a result of the storm at less than a 45 degree angle. Fallen trees were either broken at the main stem or lying on the ground. All fallen trees were assessed as either broken or uprooted. Percent survival was calculated for each species using trees that were standing after the hurricane (Trees were considered not surviving if they had fallen or if they were leaning at less than a 45 degree angle.) Crowns of all standing trees were first assessed for percent branch loss and then for leaf loss from the hurricane. For palms, only percent leaf loss was assessed. Then for dicots and conifers, if a tree had 50% or greater branch loss from the hurricane, it was declared dead and a new second survival percentage was calculated. This is called the “recalculated survival” throughout this document.
The Survey

After four hurricanes struck Florida in 2004, we concluded that urban forest professionals in the state were a resource of knowledge about wind resistance. In June 2005, we sent out 240 surveys to arborists, urban foresters, and forest scientists who were members of the International Society of Arboriculture (Florida chapter) or the Florida Urban Forestry Council or who were faculty at the University of Florida. We asked them to rank the wind resistance (high, medium or low) of those urban tree species they observed after hurricanes. Eighty-five (85) surveys (35%) were returned. We report these numbers and percentages in this publication and then use these ratings along with our measurements and analyses and the scientific literature to formulate wind resistance lists for tree species in urban areas.

III. Results

Tree Survival and Branch Loss

Tree species in the Southeastern Coastal Plain respond differently to hurricanes. Response of species to Hurricane Ivan in 2004 illustrates differences at 209 km/h (130 mph) wind speeds (Figure 2). Tree species demonstrating the highest survival in these winds were sand live oak (*Quercus geminata*), American holly (*Ilex opaca*), southern magnolia (*Magnolia grandiflora*), live oak, wax myrtle (*Myrica cerifera*), sweet gum (*Liquidambar styraciflua*), crape myrtle (*Lagerstroemia indica*), dogwood (*Cornus florida*) and sabal palm. Dogwood, live oak, sabal palm, sand live oak and southern magnolia were also the best survivors in Hurricanes Erin and Opal in 1995 (Duryea 1997).

A more detailed look at live oak and sabal palm demonstrates their repeated resilience to hurricane-force winds (Table 1). However, it can also be seen that in south Florida when the winds reached 233 and 265 km/h (145 and 165 mph) in Hurricanes Charley and Andrew, survival of live oak decreased to 78%.

Figure 2

Survival (percentage of trees still standing) of species in Hurricane Ivan, which struck at 209 km/h (130 mph). The LSD (Least Significant Difference) is at the 0.05 level.
Table 1. Survival for Southeastern Coastal Plain tree species after six hurricanes. *

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Survival (%) After Each Hurricane (Wind Speed in km/h)</th>
<th>Dicots</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erin (137)</td>
<td>Jeanne (193)</td>
<td>Opal (201)</td>
<td>Ivan (209)</td>
<td>Charley (233)</td>
<td>Andrew (265)</td>
<td></td>
</tr>
<tr>
<td>Acer rubrum</td>
<td>Red maple</td>
<td>—</td>
<td>—</td>
<td>93</td>
<td>76</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Acer saccharinum</td>
<td>Silver maple</td>
<td>—</td>
<td>—</td>
<td>93</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carya floridana</td>
<td>Florida scrub hickory</td>
<td>—</td>
<td>83</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carya illinoensis</td>
<td>Pecan</td>
<td>97</td>
<td>—</td>
<td>93</td>
<td>76</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carya glabra</td>
<td>Pignut hickory</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cinnamomum camphora a</td>
<td>Camphor</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>90</td>
<td>—</td>
</tr>
<tr>
<td>Cornus florida</td>
<td>Flowering dogwood</td>
<td>100</td>
<td>—</td>
<td>96</td>
<td>81</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ilex opaca</td>
<td>American holly</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>95</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lagerstroemia indica</td>
<td>Crape myrtle</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>84</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Liquidambar styraciflua</td>
<td>Sweet gum</td>
<td>—</td>
<td>—</td>
<td>93</td>
<td>86</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Liriodendron tulipifera</td>
<td>Tulip poplar</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>24</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Magnolia grandifolia</td>
<td>Southern magnolia</td>
<td>96</td>
<td>—</td>
<td>97</td>
<td>92</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>Sweet bay magnolia</td>
<td>97</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Myrica cerifera</td>
<td>Wax myrtle</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>90</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Platanus occidentalis</td>
<td>Sycamore</td>
<td>—</td>
<td>—</td>
<td>92</td>
<td>73</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Prunus caroliniana</td>
<td>Carolina laurelcherry</td>
<td>76</td>
<td>—</td>
<td>74</td>
<td>53</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Prunus serotina</td>
<td>Black cherry</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pyrus calleryana</td>
<td>Bradford pear</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>68</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Quercus falcata</td>
<td>Southern red oak</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Quercus virginiana</td>
<td>Live oak</td>
<td>96</td>
<td>97</td>
<td>95</td>
<td>91</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>Quercus geminata</td>
<td>Sand live oak</td>
<td>96</td>
<td>94</td>
<td>96</td>
<td>99</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Quercus laurifolia</td>
<td>Laurel oak</td>
<td>89</td>
<td>94</td>
<td>90</td>
<td>77</td>
<td>85</td>
<td>—</td>
</tr>
<tr>
<td>Quercus laevis</td>
<td>Turkey oak</td>
<td>83</td>
<td>—</td>
<td>89</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Quercus nigra</td>
<td>Water oak</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>72</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sapium sebiferum a</td>
<td>Chinese tallow</td>
<td>97</td>
<td>—</td>
<td>83</td>
<td>73</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Monocots—Palm

Butia capitata	Jelly palm	97	—	—	—	—	—
Sabal palmetto	Sabal palm	97	92	100	80	92	93
Washingtonia robusta	Washington palm	—	80	—	—	92	—

Conifers

Juniperus virginiana var. silicicola	Southern red cedar	92	—	60	61	—	—
Pinus clausa	Sand pine	61	4	58	48	—	—
Pinus elliottii var. elliottii and var. densa	Slash pine (and south Florida slash pine)	95	90 (densa)	96	72	79 (densa)	73 (densa)
Pinus glabra	Spruce pine	—	—	—	46	—	—
Pinus palustris	Longleaf pine	90	—	94	59	57	—
Pinus taeda	Loblolly pine	—	—	82	66	—	—
Taxodium distichum	Baldcypress	—	—	—	95	—	—

* Survival is defined as the percentage of trees still standing after the hurricane. Numbers are only presented for tree species having a sample greater or equal to n=20 trees for each hurricane. Least Significant Differences at p=0.05 are 35% for Jeanne, 35% for Ivan, and 30% for Charley. Erin and Opal survival percentages are from Duryea 1997; Andrew survival percentages are from Duryea et al. 1996.

a Prohibited from use in Florida
In a statistical comparison of sand live oak, live oak, and laurel oak, laurel oak had poorer overall survival than both live oak and sand live oak in four panhandle Florida hurricanes (p<0.001) (Figure 3). In several publications, live oak, sabal palm, baldcypress (Taxodium distichum) and pondcypress (Taxodium ascendens) have been ranked at the top of lists for hurricane-related wind resistance (Touliatos and Roth 1971; Swain 1979; Barry et al. 1993).

Branch loss in hurricanes may also be an important measure of trees’ resilience (Figure 4). In Hurricane Ivan, southern red cedar (Juniperus virginiana var. silicicola), sycamore (Platanus occidentalis), southern red oak (Quercus falcata) and laurel oak lost on average over 25% of their branches. Sweet gum, silver maple (Acer saccharinum), sycamore and southern red cedar were species losing the most branches in Hurricanes Erin and Opal (Duryea 1997). Species with 10% or less branch loss were crape myrtle, loblolly pine (Pinus taeda), American holly, and tulip poplar (Liriodendron tulipifera).

When we looked at tree diameter and branch loss, we found that large trees (100-200 cm, 39-79 in diameter) lost the most branches (30%), followed by medium sized trees (50-99 cm, 20-39 in) with 25% loss, smaller trees (20-49 cm, 8-19 in) with 20% loss, and finally the smallest trees (<20 cm, 8 in), which lost 12% of their branches (p<0.0001). Glizenstein and Harcombe (1988) also found that damage was positively correlated with average stem size in a forest stand. In their review, Everham and Brokaw (1996) summarize that most researchers have found a positive correlation between stem size and wind damage. Webb (1989) found that larger trees were more likely to be damaged directly by the wind compared to smaller trees, which were more likely to be indirectly damaged by other falling trees.

Since trees with large amounts of branch loss from a hurricane may not be considered as healthy urban trees, we re-analyzed survival, taking into account branches lost. As mentioned before, standing trees that had 50% or greater branch loss were called dead and a “new” survival was calculated (named “recalculated survival” henceforth) (Figure 5).
Average branch loss (%) for each tree species in Hurricane Ivan, which struck land at 209 km/h (130 mph). The LSD (Least Significant Difference) is at the 0.05 level.

Figure 4

A recalulation of survival (%) after declaring trees with ≥ 50% branch loss dead after Hurricane Ivan. The LSD (Least Significant Difference) is at the 0.05 level.

Figure 5
Some species with heavy branch loss had significantly lower recalculated survival. Southern red cedar survival was decreased from 61% to 46% due to heavy branch loss. Sycamore survival was reduced from 73% to 52%. Even live oak trees had significant branch loss, and their survival was decreased from 91% to 81%. When we statistically compared the recalculated survival of oak species after Hurricane Ivan, the ranking from greatest to lowest survival was sand live oak (98% survival), live oak (81%), laurel oak (66%), water oak (Quercus nigra) (65%) and Southern red oak (50%) (p=0.0001). A study in South Carolina coastal plain forests after Hurricane Hugo found that live oak was less damaged than laurel and water oaks (Gresham et al. 1991).

Survival of pine species showed significant differences with greatest survival for slash pine (Pinus elliottii var. elliottii) (71%), then loblolly (64%), longleaf (Pinus palustris) (57%), sand pine (Pinus clausa) (43%), and spruce pine (Pinus glabra) (38%) (p=0.0014). Three months after Hurricane Ivan, we re-measured pines and found that 2 to 3% of the slash and longleaf standing trees had died and 56% of the standing sand pine had died. In the southeastern coastal plain forest, longleaf pine was less damaged than loblolly during Hurricane Hugo (12% versus 73 % damaged) (Gresham et al. 1991), but a tornado in Texas resulted in equal and intense damage to loblolly, longleaf and shortleaf (Pinus echinata) pines (Glitzenstein and Harcombe 1988). Two conifer species that have shown repeatedly poor performance in our studies during hurricanes are sand pine and southern red cedar (Duryea 1997) (Table 1).

Defoliation

There were distinct species differences in defoliation during Hurricane Ivan. Species like sand live oak, crape myrtle, and dogwood lost an average of 94%, 88%, and 86% of their leaves compared to southern red cedar, wax myrtle, slash pine, longleaf pine, and loblolly pine, which lost 32%, 31%, 29%, 19%, and 11% of their leaves, respectively (LSD=17%) (Figure 6).

Leaf loss had a positive relationship (p<0.0001) with both survival and recalculated survival (trees with ≥ 50% branch loss excluded), which is to say that losing leaves during the hurricane meant higher survival. Francis and Gillespie (1993), reporting on urban trees in Puerto Rico after Hurricane Hugo in 1989, also found that crown damage appeared to be avoided if the crown surface area was reduced quickly with leaf and twig loss during the hurricane. There are some exceptions to defoliation being a strategy for survival; southern magnolia, American holly and sabal palm are all excellent survivors but they only lost 43%, 34%, and 27% of their leaves.

Native and Exotic Species

In the coastal plain area, exotic tree species made up 8% of the trees in the urban forest. The major exotic species were crape myrtle, Chinese tallow (Sapium sebiferum)—a prohibited invasive species, camphor tree (Cinnamomum camphora)—an invasive species, Bradford pear (Pyrus calleryana), and palms such as pindo palm (Butia capitata) and Washington fan palm (Washingtonia robusta). As a group, native trees survived the same as exotic trees (73% versus 77%, not significantly different [n.s.]) and lost the same amount of branches (20% versus 15%, n.s.) and leaves (58% versus 60%, n.s.). In contrast, after Hurricane Andrew struck south Florida, native trees survived winds better than non-native trees (Duryea et al. 1996). Other studies have shown trends toward increased wind damage of exotic species in rural plantation forests (King 1945; Everham and Brokaw 1996).

The Survey

Arborists’ and urban foresters’ ratings of wind resistance for coastal plain species show a strong agreement with our measurements over several hurricanes. Small trees that were awarded high wind-resistance ratings were fringe tree (Chionanthus virginicus), dogwood, persimmon (Diospyros virginiana), myrtle oak (Quercus myrtifolia), sparkleberry (Vaccinium arboretum) and the hollies (Ilex spp.) (Table 2).
Table 2. Results of survey of arborists, scientists, and urban foresters in Florida.*

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wind Resistance</th>
<th>p-value</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High N</td>
<td>Medium N</td>
<td>Low N</td>
</tr>
<tr>
<td>Dicots and Pines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer negundo</td>
<td>boxelder</td>
<td>1</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Acer palmatum</td>
<td>Japanese maple</td>
<td>6</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Acer rubrum</td>
<td>red maple</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Acer saccharinum</td>
<td>silver maple</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Acer saccharum subsp floridanum</td>
<td>Florida sugar maple</td>
<td>2</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Betula nigra</td>
<td>river birch</td>
<td>11</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>Carpinus caroliniana</td>
<td>ironwood</td>
<td>7</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Carya glabra</td>
<td>pignut hickory</td>
<td>11</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>Carya illinoiensis</td>
<td>pecan</td>
<td>6</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Carya tomentosa</td>
<td>mockernut hickory</td>
<td>6</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Celtis laevigata</td>
<td>sugarberry</td>
<td>4</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Celtis occidentalis</td>
<td>common hackberry</td>
<td>2</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Cercis canadensis</td>
<td>red bud</td>
<td>14</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>Chionanthus virginicus</td>
<td>fringe tree</td>
<td>7</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Cornus florida</td>
<td>flowering dogwood</td>
<td>9</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>x Cupressocyparis leylandii</td>
<td>leyland cypress</td>
<td>7</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>Diospyros virginiana</td>
<td>common persimmon</td>
<td>14</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td>Eucalyptus cinerea</td>
<td>silver dollar eucalyptus</td>
<td>2</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Eriobotrya japonica C</td>
<td>loquat</td>
<td>9</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Fraxinus americana</td>
<td>white ash</td>
<td>3</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>Fraxinus pennsylvanica</td>
<td>green ash</td>
<td>3</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Ilex cassine</td>
<td>dahoon holly</td>
<td>34</td>
<td>76</td>
<td>10</td>
</tr>
<tr>
<td>Ilex opaca</td>
<td>American holly</td>
<td>21</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>Ilex vomitoria</td>
<td>yaupon holly</td>
<td>28</td>
<td>81</td>
<td>7</td>
</tr>
<tr>
<td>Juniperus silicicola</td>
<td>southern red cedar</td>
<td>14</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>Lagerstroemia indica</td>
<td>crape myrtle</td>
<td>55</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>Liriodendron tulipifera</td>
<td>tulip poplar</td>
<td>2</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Liquidambar styraciflua</td>
<td>sweetgum</td>
<td>18</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>southern magnolia</td>
<td>45</td>
<td>82</td>
<td>9</td>
</tr>
<tr>
<td>Magnolia virginiana</td>
<td>sweetbay magnolia</td>
<td>15</td>
<td>42</td>
<td>17</td>
</tr>
<tr>
<td>Magnolia x soulangiana</td>
<td>saucer magnolia</td>
<td>8</td>
<td>44</td>
<td>9</td>
</tr>
<tr>
<td>Morus rubra</td>
<td>red mulberry</td>
<td>6</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>Myrica cerifera</td>
<td>wax myrtle</td>
<td>18</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>Nyssa aquatica</td>
<td>water tupelo</td>
<td>7</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>Nyssa sylvatica</td>
<td>black tupelo</td>
<td>14</td>
<td>58</td>
<td>9</td>
</tr>
<tr>
<td>Ostrya virginiana</td>
<td>American hop hornbeam</td>
<td>8</td>
<td>67</td>
<td>4</td>
</tr>
</tbody>
</table>

Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)

* Rankings for wind resistance of southeastern US coastal plain tree species. N is the number of respondents for each species, out of a total of eighty-five experts. P-values from the chi-square test for equal proportions indicate the significance level for one or more of the categories being different from the others; n.s. means that there is no significant difference between the categories of high, medium and low (p>0.05).
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wind Resistance</th>
<th>p-value</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Dicots and Pines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus glabra</td>
<td>spruce pine</td>
<td>7</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>Pinus elliottii var. elliottii</td>
<td>slash pine</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Pinus palustris</td>
<td>longleaf pine</td>
<td>23</td>
<td>56</td>
<td>13</td>
</tr>
<tr>
<td>Pinus taeda</td>
<td>loblolly pine</td>
<td>7</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Platanus occidentalis</td>
<td>sycamore</td>
<td>17</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>Prunus angustifolia</td>
<td>chickasaw plum</td>
<td>12</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Prunus caroliniana</td>
<td>Carolina laurelcherry</td>
<td>5</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Prunus serotina</td>
<td>black cherry</td>
<td>4</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Pyrus calleryana</td>
<td>Bradford pear</td>
<td>5</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Quercus alba</td>
<td>white oak</td>
<td>6</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>Quercus falcata</td>
<td>southern red oak</td>
<td>4</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Quercus geminata</td>
<td>sand live oak</td>
<td>36</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>Quercus laevis</td>
<td>turkey oak</td>
<td>17</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td>Quercus laurifolia</td>
<td>laurel oak</td>
<td>3</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Quercus michauxii</td>
<td>swamp chestnut oak</td>
<td>8</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Quercus myrtifolia</td>
<td>myrtle oak</td>
<td>13</td>
<td>76</td>
<td>4</td>
</tr>
<tr>
<td>Quercus nigra</td>
<td>water oak</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Quercus phellos</td>
<td>willow oak</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Quercus shumardii</td>
<td>shumard oak</td>
<td>13</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>Quercus stellata</td>
<td>post oak</td>
<td>5</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>Quercus virginiana</td>
<td>live oak</td>
<td>64</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>Salix x sepulcrais</td>
<td>weeping willow</td>
<td>2</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>baldcypress</td>
<td>59</td>
<td>91</td>
<td>6</td>
</tr>
<tr>
<td>Taxodium ascendens</td>
<td>pondcypress</td>
<td>41</td>
<td>91</td>
<td>4</td>
</tr>
<tr>
<td>Tilia americana</td>
<td>basswood</td>
<td>5</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>Ulmus alata</td>
<td>winged elm</td>
<td>15</td>
<td>53</td>
<td>12</td>
</tr>
<tr>
<td>Ulmus americana</td>
<td>American elm</td>
<td>6</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Ulmus parvifolia</td>
<td>Chinese elm</td>
<td>7</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>Vaccinium arboreum</td>
<td>sparkleberry</td>
<td>11</td>
<td>85</td>
<td>2</td>
</tr>
</tbody>
</table>

Palms

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wind Resistance</th>
<th>p-value</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butia capitata</td>
<td>pindo, jelly</td>
<td>34</td>
<td>79</td>
<td>7</td>
</tr>
<tr>
<td>Phoenix canariensis</td>
<td>Canary Island date palm</td>
<td>49</td>
<td>89</td>
<td>4</td>
</tr>
<tr>
<td>Phoenix dactylifera</td>
<td>date palm</td>
<td>33</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>Sabal palmetto</td>
<td>cabbage, sabal palm</td>
<td>71</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Washingtonia robusta</td>
<td>Washington fan palm</td>
<td>29</td>
<td>54</td>
<td>16</td>
</tr>
</tbody>
</table>

Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)

*Rankings for wind resistance of southeastern US coastal plain tree species. N is the number of respondents for each species, out of a total of eighty-five experts. P-values from the chi-square test for equal proportions indicate the significance level for one or more of the categories being different from the others; n.s. means that there is no significant difference between the categories of high, medium and low (p>0.05)."
While live oak and sand live oak were rated as high, other oaks such as southern red oak and swamp chestnut oak (*Quercus michauxii*) were rated as medium and, in agreement with our results, laurel and water oaks were rated as having low wind resistance. Although we have consistently seen low survival or heavy branch damage in southern red cedar, the ratings were even for each of the wind-resistance categories in the survey results. However, 91% of the respondents rated baldcypress and pondcypress with high wind resistance (Figure 7). Both cypresses were stated to have the best wind resistance along with live oak and sabal palm after Hurricanes Camille and Frederick struck the Gulf Coast in 1969 and 1979 (Swain 1979).

In the survey, sand pine received a low rating, which is consistent with our results (Figure 8), while the other pines were mostly rated as medium, again consistent with our results. In their summarizing list of wind resistance for forest species, Everham and Brokaw (1996) cite ten studies where loblolly, slash and longleaf pines are ranked with low to intermediate wind resistance.

Sabal palm received a high wind resistance rating from 99% of the survey respondents in agreement with our ratings and those of Swain (1979). Canary Island date palm (*Phoenix canariensis*), which is being planted more frequently in north Florida, received a high rating from 89% of the respondents (Figure 9).

Respondents rated sweet gum’s wind resistance as medium to high; in a summary table of wind resistance by Everham and Brokaw (1996), seven studies rated sweet gum as having medium to high wind resistance. Our studies have shown that it survives well but is prone to some branch breakage. In a Texas study after a tornado, sweet gum was listed as one of the best survivors, but also the tree with the most branch damage (Gliltzenstein and Harcombe 1988). In a study after Hurricane Kate in 1985, sweet gum had low mortality (2%) in a southern mixed hardwood forest compared to spruce pine with 34% mortality (Batista and Platt 2003). They note that wind-firmness of sweet gum is likely due to its underground connections, short and stout branches, and leaves with slender, long petioles that readily detach from branches in wind. On gravelly ridges, hillsides, and upland piedmont sites, sweetgum has been noted to develop a particularly strong taproot and is very resistant to wind (Kormanik 1990).

Tulip poplar had very poor survival in Hurricane Ivan (24%). Survey respondents rated it as having medium to low wind resistance. Everham and Brokaw (1996) summarize two studies in their table with high levels of wind damage for tulip poplar in high intensity storms.
IV. Recommendations

Taking our survival and branch loss results from hurricanes and incorporating results from the survey and from the scientific literature, we have developed lists of relative wind resistance for tree species in the southeastern coastal plain (Table 3). These lists should be used with caution, with the knowledge that no species and no tree is completely wind proof. In addition, local considerations such as soil, cultural practices, tree age and health, and other urban forest health conditions need to be taken into account. In addition to hurricane wind speed, other conditions accompanying hurricanes such as precipitation and the speed with which the storms move through an area appear to influence tree response.

Table 3. Wind resistance of southeastern US coastal plain tree species.*

<table>
<thead>
<tr>
<th>HIGHEST WIND RESISTANCE</th>
<th>DICOTS</th>
<th>CONIFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carya floridana, Florida scrub hickory</td>
<td>Quercus geminata, sand live oak</td>
<td></td>
</tr>
<tr>
<td>Cornus florida, dogwood</td>
<td>Quercus laevis, turkey oak</td>
<td></td>
</tr>
<tr>
<td>Ilex cassine, dahoon holly</td>
<td>Quercus myrtiflora, myrtle oak</td>
<td></td>
</tr>
<tr>
<td>Ilex glabra, inkberry</td>
<td>Quercus virginiana, live oak</td>
<td></td>
</tr>
<tr>
<td>Ilex opaca, American holly</td>
<td>Podocarpus spp, podocarpus</td>
<td></td>
</tr>
<tr>
<td>Lagerstroemia indica, crape myrtle</td>
<td>Vaccinium arboresum, sparkleberry</td>
<td></td>
</tr>
<tr>
<td>Magnolia grandiflora, southern magnolia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIUM-HIGH WIND RESISTANCE</th>
<th>DICOTS</th>
<th>CONIFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer saccharum, Florida sugar maple</td>
<td>Liquidambar styraciflua, sweetgum</td>
<td></td>
</tr>
<tr>
<td>Acer palmatum, Japanese maple</td>
<td>Magnolia virginiana, sweetbay magnolia</td>
<td></td>
</tr>
<tr>
<td>Betula nigra, river birch</td>
<td>Magnolia x soulangiana, saucer magnolia</td>
<td></td>
</tr>
<tr>
<td>Carpinus caroliniana, ironwood</td>
<td>Nyssa aquatica, water tupelo</td>
<td></td>
</tr>
<tr>
<td>Carya glabra, pignut hickory</td>
<td>Nyssa sylvatica, black tupelo</td>
<td></td>
</tr>
<tr>
<td>Carya tomentosa, mockernut hickory</td>
<td>Ostrya virginiana, American hophorbeam</td>
<td></td>
</tr>
<tr>
<td>Cercis canadensis, red bud</td>
<td>Prunus angustifolia, chickasaw plum</td>
<td></td>
</tr>
<tr>
<td>Chionanthus virginicus, fringe tree</td>
<td>Quercus michauxii, swamp chestnut</td>
<td></td>
</tr>
<tr>
<td>Diospyros virginiana, common persimmon</td>
<td>Quercus shumardii, Shumard oak</td>
<td></td>
</tr>
<tr>
<td>Fraxinus americana, white ash</td>
<td>Quercus stellata, post oak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulmus alata, winged elm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIUM-LOW WIND RESISTANCE</th>
<th>DICOTS</th>
<th>CONIFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer negundo, boxelder</td>
<td>Persea borbonia, redbay</td>
<td></td>
</tr>
<tr>
<td>Acer rubrum, red maple</td>
<td>Platanus occidentalis, sycamore</td>
<td></td>
</tr>
<tr>
<td>Acer saccharinum, silver maple</td>
<td>Prunus serotina, black cherry</td>
<td></td>
</tr>
<tr>
<td>Celtis laevigata, sugarberry</td>
<td>Quercus alba, white oak</td>
<td></td>
</tr>
<tr>
<td>Celtis occidentalis, hackberry</td>
<td>Quercus phellos, willow oak</td>
<td></td>
</tr>
<tr>
<td>Cinnamomum camphora, camphor b</td>
<td>Salix x sepulcralis, weeping willow</td>
<td></td>
</tr>
<tr>
<td>Eriobotrya japonica, loquat c</td>
<td>Ulmus americana, American elm</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus cinerea, silverdollar eucalyptus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus pennsylvanica, green ash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morus rubra, red mulberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrica cerifera, wax myrtle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOWEST WIND RESISTANCE</th>
<th>DICOTS</th>
<th>PALMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carya illinoensis, pecan</td>
<td>Juniperus silicicola, southern red cedar</td>
<td></td>
</tr>
<tr>
<td>Liriodendron tulipifera, tulip poplar</td>
<td>x Cupressocyparis leylandii, Leyland cypress</td>
<td></td>
</tr>
<tr>
<td>Prunus caroliniana, Carolina laurelcherry</td>
<td>Pinus clausa, sand pine</td>
<td></td>
</tr>
<tr>
<td>Pyrus calleryana, Bradford pear</td>
<td>Pinus glabra, spruce pine</td>
<td></td>
</tr>
<tr>
<td>Quercus falcata, southern red oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus laurifolia, laurel oak</td>
<td>Washingtonia robusta, Washington fan</td>
<td></td>
</tr>
<tr>
<td>Quercus nigra, water oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapindus sebiferum, Chinese tallow a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus parvifolia, Chinese elm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These lists do not include all trees that could be wind resistant. They list those species encountered during our studies in large enough numbers to run statistical comparisons.

* Wind resistance of southeastern coastal plain tree species as estimated utilizing the hurricane measurements and the survey results in this study, and the scientific literature cited throughout this publication.

a Prohibited from use in Florida
b Invasive and not recommended for use in Florida
c Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)
New Trees

To promote a healthy and more wind-resistant urban forest, additional recommendations for establishing new trees include:

- **Plant a mixture of species, ages, and layers (shrubs and trees) to maintain diversity in your community.**
- **Plant trees from the “Highest” and “Medium-High” Wind Resistance lists and match these to local site conditions.**
- **Give trees adequate rooting space with no obstructions (e.g. sidewalks, buildings, and streets): for small trees, provide at least 3 meters by 3 meters; for large trees, provide at least 10 meters by 10 meters.**
- **Consider planting trees in groups as opposed to individually.**
- **Consider soil properties when deciding what to plant (e.g. soil depth, water table depth, and compaction).**
- **Give trees adequate aerial space considering their crown size when mature.**
- **Plant high quality trees with good structure.**
- **Establish a structural pruning program early on.**

Established Trees

Likewise, recommendations for managing established trees include:

- **Have tree health evaluated and remove hazard trees.**
- **Consider removing trees that are on the “Lowest Wind Resistance” list, especially if they are over-mature and endangering life or property.**
- **Establish a regular structural pruning program (especially for dicots).**
- **Consult with a certified arborist.**
- **Do not over-prune palms especially before a hurricane; palms only need to have dead or dying leaves removed.**
- **Be aware of possible root damage and lack of anchoring when construction has resulted in sidewalks or trenches near the roots of trees.**
- **Avoid damage to the trunk of the tree (e.g. mechanical weed control damage).**
Literature Cited

How to Minimize Wind Damage in the South Florida Landscape

Timothy K. Broschat and Derek Burch

When an area has been free of hurricane-strength winds for a number of years, there is a possibility of severe damage to trees and to the structures near them when a storm finally hits. Trees and shrubs, even those native to an area, can grow too massive or unbalanced to be able to stand wind-storms, and it is worth learning how to prune and shape trees in order to minimize the risks of damage.

The ideal approach to avoiding storm damage begins with the initial selection of the plants. Such selection takes into consideration the branch and trunk strength of the trees being considered for planting, how strong their root system is, and their placement relative to structures and utilities. A regular system of pruning must then be established; pruning should develop a sturdy, well-spaced framework of healthy branches carrying an open, leafy canopy that allows air to move freely.

Trees Resistant to Wind

There are some tree species that stand up to strong winds much better than others. (No tree can be guaranteed to stand up to hurricane-force winds or even strong gusts of wind. This is particularly true if it has been growing un-pruned for a number of years.) These trees are more likely to withstand strong winds.

- *Cordia sebestena*—geiger tree
- *Mangifera indica*—mango
- *Manilkara roxburghiana*—mimusops
- *Quercus virginiana*—live oak
- *Tamarindus indica*—tamarind

Most palm species.

Brittle Trees

At the other end of the scale are the trees noted for dropping branches or splitting apart under stress. Losing leaves or twigs in a high wind will make a garden untidy, but may give the trees an advantage by reducing the stress on the main branches. The trees on this list are likely to lose major limbs.

- *Acacia auriculiformis*—earleaf acacia
- *Bischofia javanica*—bischofia
- *Enterolobium cyclocarpum*—ear tree
- *Eucalyptus spp.*—eucalyptus
- *Grevillea robusta*—silk oak
- *Hibiscus tiliaceus*—sea hibiscus
- *Persea americana*—avocado
- *Spathodea campanulata*—African tulip tree

Most species fall between the extremes and have a good chance of surviving a moderate to strong storm intact, provided they have had proper pruning.
Shallow-Rooted Trees

Another class of damage occurs when the whole tree blows over rather than breaking up. The soil in which the trees are growing may have a major influence on how shallow-rooted a tree is, but there are certain species that almost never make deep roots, and these are always likely to blow over. On poorly drained soils, such as marl, where the water table periodically comes close to the soil surface, most trees that would otherwise form deep roots will be shallow-rooted and much more easily blown over than they would be on well drained soils. It is interesting to consider that in nature, blowing over rather than breaking up may help the tree to survive. The roots left in the ground supply the fallen tree with nutrients and new upright shoots form from the base and along the trunk. In a controlled landscape this is not a desirable characteristic, but it may be an advantage in semi-wild situations, particularly along the coast.

Species with shallow root systems include:

- *Albizia lebbek* — woman’s tongue
- *Bulnesia arborea* — vera wood
- *Casuarina spp.* — Australian pine
- *Ficus microcarpa* — Indian laurel
- *Peltophorum* spp. — yellow poinciana, copperpod
- *Thespesia populnea* — seaside mahoe

Planting Considerations

When a tree falls or breaks up it is more likely to damage a structure close to it than one farther away. If the landscape planning includes the use of trees to shade the house, some compromise will be necessary to avoid the shade trees turning into wreckers during a storm. It is more important to shade the east and west walls than the roof. Small trees could be planted fairly close to the house to accomplish this, and they would be much less hazardous than larger trees, even if the larger trees were farther away. Observations of native tree hammocks in Dade County suggest that a large number of trees close together may be an effective storm protection for structures, but no definitive testing of this theory has been carried out. Overhead utility lines are even more vulnerable to damage than the roof or windows of a house, and there should be no tree branches close enough to drop across them or even brush against them.

Once the tree has been selected and planted in such a place as to reduce hazards, there still remain cultural practices throughout the life of the tree that will affect its survival during a storm.

When planting, the usual advice has been to dig a large hole, put the tree in the hole, and fill around the ball of roots with enriched soil. Under certain circumstances, this may be exactly the wrong thing to do! In really bad soil or rock, the hole full of rich soil may allow the tree roots to get off to a good start, but the roots may take a long time to grow from the good soil into the poor soil surrounding it. Roots may coil around in the hole just as they would in a pot, and with the same disadvantages: a danger of encircling and constricting the lower part of the trunk, a limited volume from which to draw water and nutrients, and very little resistance to being blown over.

If the soil is enriched or amended before planting, use no more than 1/3 organic matter (by volume) mixed well with the original soil from the site, making this addition to an area large enough to support an extensive root system. If this is not feasible, plant the tree in unamended soil and pay close attention to watering and fertilizing until the tree roots have grown out strongly. Use of organic mulches 3 to 4 inches deep around the tree (but not touching the trunk) will help with the establishment of the tree by keeping the ground cooler, moister, and with fewer weeds than if the ground were bare. The mulch will gradually improve the soil, too.

In Dade County, where limestone can be a problem, dynamiting before planting is very helpful in opening cracks through which the roots can travel. Once established, trees planted in this way are extremely resistant to blowing over. Unfortunately, dynamiting is not allowed in many areas.

Pruning for Wind Resistance

The most wind-resistant form for a tree is one with a central leader and a well-spaced framework of branches around and up and down the trunk (Figure 1). Most trees can be grown in this form when they are young, but the growth habit of some species will change to a multi-trunked spreading form as they mature.

There should be no narrow forks or branches leaving the trunk at an acute angle (Figure 2), since these branches are likely to split under stress. Crotches from 45 to 90 degrees are less likely to split than narrow V-crotches of less than 40 degrees.

A wind-resistant tree is the result of regular care since its early life. Young trees should not be cut back to make them bushy, but should rather be encouraged to form a strong leader with well-spaced laterals (branches that go out to the
side) that are held back enough to stop them from forming multiple, competing leaders (Figure 3).

A young tree in the form shown in Figure 3 can have the lower branches removed over a period of time to give a clear trunk to whatever height is necessary. It should not, however, be cleaned of laterals in the lower part of the trunk too soon, since the branches there (provided they are not allowed to form competing leaders) will help to give a larger trunk diameter and a much sturdier tree (Figure 4).

Later pruning should consist of forming a well-spaced framework of strong branches, and a pleasing outline to the tree.

Preparing for a Storm
Faced with the threat of a storm, gardeners who have kept their trees thinned and with a canopy in proportion to the trunk and branches have little extra to do. The overgrown, neglected tree, however, is another matter. It may be necessary to reduce the size of the tree, which will be a minor operation and hardly noticeable for a tree which has been well maintained. For a neglected tree it will mean severe surgery and a tree that will be ugly for a few months whether or not the storm hits.

The order of pruning is always the same (Figure 5).
1. Cut out dead, diseased, and damaged wood.
2. Take out watersprouts.
3. Cut out crossing branches and those growing into the center of the tree.
4. Clean off small branches that clutter the center of the tree.
5. Select a well spaced framework of branches and cut all others out completely.
6. Shorten branches to give a balanced head.
Whenever possible, this shortening should be done to a bud that has already started to grow out as a sidebranch. (Figure 6). Cutting to an upward pointing branch or one leading to one side or the other will determine the direction in which new growth occurs for a time. If the tree has been well managed, pruning in this way (drop crotch pruning) will mean that the cuts scarcely show since a lot of foliage will remain to disguise them. In cutting back a neglected tree, many of the cuts will have to be made to a part of the branch with no leaves or side branches. Even when the cut can be made to a fork, the remaining branch may also need to be shortened so that the cuts have very little foliage to hide them.

Heading back (cutting branches severely to a bare stump) should be avoided unless absolutely necessary. Not only does this risk sunburn for all the trunk suddenly exposed to the light, but it also means that a tuft of twigs will grow from each stump which will have to be thinned later. All cutting should be done so as to avoid damage to the parts of the tree that are to remain. Cuts should be finished close to the trunk or remaining branch and at the angle shown in Figure 7 so that they will heal well. Painting the cuts is not recommended. It is of no value in promoting healing, although it may help to disguise the cut.

If you have coconut palms, preparing for storms includes harvesting all nuts that are of any size. Coconuts and most other large palms should have dead leaves removed. The nuts and the leaves can act as missiles if the wind catches them right. Do not, however, cut off all leaves except the central upright tuft, since this removes the protection for the bud (Figures 8 and 9). Last minute prunings can also blow around dangerously and should thus be disposed of for safety.
Windstorms are always a matter of concern, but trees that have been selected properly, sited with care, and maintained so as to have a sturdy form and an open canopy stand the best chance of surviving intact and not adding to the damage in the area.
Selecting Tropical and Subtropical Tree Species for Wind Resistance

Mary L. Duryea and Eliana Kampf

Introduction

A team of scientists at the University of Florida/Institute of Food and Agricultural Sciences (UF/IFAS) has been tracking and studying major hurricanes since Hurricane Andrew in 1992 to determine their effect on the urban forest. One of the major goals of this study is to assemble lists of relative wind resistance for different urban tree species. These lists can assist communities to better prepare for the next hurricane season and to rebuild a healthy urban forest by selecting proper species.

This fact sheet presents the research and methodology that lead to lists of relative wind resistance for tropical and subtropical tree species (Chapter 8 reports on coastal plain tree species). It also discusses in detail its results and additional recommendations for selecting and establishing tropical and subtropical species for a healthier and more wind-resistant urban forest.

Study

Since 1992 when Hurricane Andrew struck south Florida, we have been studying the impacts of hurricanes on urban forests (Duryea et al. 1996; Duryea et al. 2007a; Duryea et al. 2007b). In 1998 when Hurricane Georges (177 km/h) crossed over the entire island of Puerto Rico, and in 2004 when Hurricanes Jeanne (193 km/h) and Charley (233 km/h) struck south Florida, we continued with these measurements. Hurricanes striking the subtropical and tropical regions of Florida and Puerto Rico, with their varied wind speeds, gave us the opportunity to study over 60 species and their comparable responses to wind. This study utilizes our results from hurricanes and incorporates results from a survey and the scientific literature to present lists of relative wind resistance for tropical and subtropical tree species.

Methods

Urban tree damage was measured within 3 to 10 days of the two hurricanes that struck Florida (Charley and Jeanne 2004) and the one that struck Puerto Rico (Georges 1998). In this study, we also included the hurricane response of some tropical/subtropical species, such as live oak (Quercus...
virginiana) and sabal palm (Sabal palmetto), that occur throughout Florida and were impacted by Hurricanes Erin (1995), Opal (1995), and Ivan (2004) in the Florida panhandle (Figure 2).

Hurricane Andrew measurements involved a survey of 128 homeowners in Dade County, Florida who measured and reported to us about each tree in their yards (Duryea et al. 1996). The methodology for the other hurricanes was the same and is as follows: neighborhoods at the point of landfall of the hurricane were randomly chosen. For each neighborhood, all trees were observed along street transects. For each of the three hurricanes, we sampled 26 neighborhoods and 3,678 trees (Georges), 17 neighborhoods and 2,272 trees (Charley), and 7 neighborhoods and 1,642 trees (Jeanne). (Branch loss measurements for Hurricanes Frances [2005] and Jeanne were combined and made immediately following Hurricane Jeanne).

Results

Overall Urban Forest Loss

The percent of urban forest loss (mortality) ranged from 13% for Hurricane Georges to 16% for Hurricane Jeanne to 18% for Hurricane Charley. The urban forest loss for these hurricanes combined with hurricanes striking the southeastern coastal plain is reported in EDIS publication FOR118 Lessons Learned from Hurricanes. To evaluate tree survival and responses, we divided the species into four categories: palms, dicots, conifers, and Puerto Rico species. We then talk about native versus exotic species.

Tree Survival and Branch Loss

Palms

Sabal palms along with the smaller palms such as areca (Chrysalidocarpus lutescens), Manila (Veitchia merrilii) and pigmy date (Phoenix roebelenii), had 89% or greater survival (Table 1). In Hurricane Charley, palm survival was 88% compared to 77% for all other tree species (p=0.0001). In Hurricane Jeanne, palm survival was 86% versus 76% for all other tree species (p<0.0001). When compared to dicots, palms have often been observed to be more resistant to winds (Francis and Gillespie 1993; Frangi and Lugo 1991). Zimmerman et al. (1994) conclude that palms are wind resistant because they are able to lose all their leaves without losing their terminal meristem. Coconut palm (Cocos nucifera), which survived poorly in Hurricane Andrew (Duryea et al. 1996), exhibited intermediate survival in both Charley’s and Georges’ winds (77% survival) (Table 1). Royal palm (Roystonea elata) which had only 63% survival in Andrew, had improved survival (87%) in Hurricane Charley in the deeper soils of the Gulf Coast. Washington palm (Washingtonia robusta) survived well in Charley’s 233 km/h (145 mph) winds (92%) but less well in Jeanne’s winds of 193 km/h (120 mph) (80%). This was perplexing to us until we looked at the height comparisons of the two populations. Washington palms in the Ft. Pierce area that experienced Hurricane Jeanne averaged 11 m in height, with 42% of the palms above 10 m, compared to an average of 4 m and only 7% over 10 m for Charley; perhaps as Washington palms acquire heights of 20 meters and above, their wind resistance starts to decline.

Dicots

Of the dicot tree species, the poorest surviving were melaleuca (Melaleuca quinquervia), Australian pine (Casuarina equisitifolia), and black olive (Bucida buceras) in Hurricane Charley. Dicots with highest survival were camphor (Cinnamomum camphora), gumbo limbo (Bursera simaroubba), sea grape (Coccoloba uvifera), strangler fig (Ficus aurea), live oak, and laurel oak (Quercus laurifolia) (Figure 3).

Trees with large amounts of branch loss in a hurricane (Figure 4) may not be considered as healthy urban trees, so we re-analyzed survival taking into account branches lost. Standing trees with 50% or greater branch loss were called dead and a “new” survival was calculated (named “recalculated survival”).

Some species such as camphor, strangler fig, laurel oak, and live oak may continue to stand in hurricane- force winds.
but at the same time lose large branches, especially at the 233 km/h (145 mph) winds of Charley (Figure 5).

After intermediate survival in Hurricane Andrew, West Indian mahogany (*Swietenia mahagoni*) and white cedar (*Tabebuia heterophylla*) exhibited higher survival in Hurricane Georges at 177 km/h (110 mph). After relatively poor survival in Andrew, 94% of the royal poinciana (*Delonix regia*) survived the relatively lighter winds of Hurricane Georges. In a study of 24 species of urban trees in San Juan, Puerto Rico after Hurricane Georges, species with the highest survival (lowest failed stems) were West Indian mahogany (100%), mango (*Mangifera indica*) (98%), queen's crape myrtle (*Lagerstroemia speciosa*) (98%), and royal poinciana (98%) (Francis 2000). Species with the poorest survival were African tuliptree (*Spathodea campanulata*) (66%) and weeping banyan (*Ficus benjamina*) (70%) (Francis 2000). Studies summarized in Everham and Brokaw's table of species resistance to catastrophic wind (1996) rank gumbo limbo, mahogany, sea grape, bald-cypress (*Taxodium distichum*), live oak, and white cedar with high wind resistance in at least two or more studies. Species that received the lowest wind resistance ratings in two or more studies were Australian pine (*Casuarina equisetifolia*), Honduras mahogany (*Swietenia macrophylla*), swamp mahogany (*Eucalyptus robusta*), and Caribbean pine (*Pinus caribaea*).
In the urban areas of the southeastern coastal plain, laurel oak trees did not survive as well as live oak and sand live oak (*Quercus geminata*) in four hurricanes (Duryea *et al.* 2007b). However, in the two south Florida hurricanes, both survival and branch loss for live and laurel oaks were similar (Figures 4 and 5). We also compared large trees of these species (greater than 50 cm diameter) and found that their survival, branch loss, and re-calculated survival were not significantly different in Jeanne and Charley (Figure 6).

Speculations about the reasons for lack of difference between live oak and laurel oak in south Florida include:

1. Laurel oak in south Florida may be a different cultivar or variety than those in north Florida and (2) sandier soils in south Florida and their accompanying lower site quality may result in laurel oaks with shorter heights or lower height-to-diameter ratio (as occurs between the north Florida and south Florida varieties of slash pine (*Pinus elliottii* var. *elliottii* and var. *densa*). Still, many authors point to live oak as a tree with strong wood and little failure in hurricanes (Touliatos and Roth 1971; Swain 1979; Hook *et al.* 1991; Barry *et al.* 1993).

Conifers

Of the conifer species, baldcypress survived Hurricane Charley the best with 95% survival (Figure 3). Baldcypress also suffered little damage after Hurricane Hugo (Putz and Sharitz 1991; Gresham *et al.* 1991). After Hurricane Andrew, cypress trees in the Everglades National Park were still standing on the edges of the hammocks while many hardwoods had failed (Orr and Ogden 1992). Only 4% of the sand pine (*Pinus clausa*) survived Hurricane Jeanne; sand pine’s poor survival has been measured in several other hurricanes (Duryea 1997; Duryea *et al.* 2007a). South Florida slash pine is next best in wind resistance for the conifers across the south Florida hurricanes (Figure 6); however, longleaf pine (*Pinus palustris*), which is usually similar to slash pine in wind resistance in the coastal plain hurricanes (Duryea *et al.* 2007a), had 57% survival in Hurricane Charley. Survival of south Florida slash pine in pine rockland ecosystems ranged from 78% to 88% in Hurricane Andrew. Mortality of the standing pine trees continued for one year with 17% to 25% dying (Platt *et al.* 2000). We returned three months after Hurricane Charley and found that 27% of the standing south Florida slash pines and 48% of the standing longleaf pines had died.

Puerto Rico Species

Of the species measured in Puerto Rico, the species with the highest survival and least branch damage were Santa Maria (*Calophyllum calaba*), Caribbean pine, schefflera, West Indian mahogany, and Oriental arborvitae (*Thuja orientalis*) (Table 2).

Many trees had extensive branch loss that reduced survival further with the most notable species being Norfolk Island pine (*Araucaria heterophylla*), Napoleon’s plume (*Bauhinia monandra*), apple blossom (*Cassia javanica*), yellow cassia (*Cassia siamea*), swamp mahogany, mahoe (*Hibiscus elatus*), and African tuliptree. The 24 tree species measured in Francis’ study (2000) following Hurricane Georges also showed extensive branch damage ranging from 23% to 81%.
Similar to our study, Francis also found that West Indian mahogany was the best survivor (100% survival) and had the least branch loss, while African tuliptree suffered the most crown loss and was one of the poorest survivors (66% survival) (Francis 2000). Results for black olive and royal poinciana were also similar to those in our study, with trees surviving well (98%) but losing nearly half of their branches.

Native and Exotic Species

Native tree species survived better in Hurricanes Jeanne, Charley, and Andrew but not in Hurricane Georges (Figure 8).

Native species also lost fewer branches than exotic species in Jeanne (21% versus 36%, p=0.0001) and Charley (36% versus 39%, p=0.0001). Some of the exotic species with low survival were melaleuca, Australian pine, and queen palm, and these can be compared to native species with high survival—live oak, gumbo limbo, and sabal palm. In their extensive review of hurricanes and forest damage, Everham and Brokaw (1996) summarize that there is a trend towards more damage in exotic forest plantations, although they also point out that these exotic forests are often monocultures. Out of the 35 tree species measured after Hurricane Georges in Puerto Rico (n≥20), only four were native trees to Puerto Rico—Santa Maria, black olive, white cedar, and common calabash tree (Crescentia cujete). Santa Maria survived very well (93%), but the other three had 84%, 83%, and 67% respectively, not surviving better than many of the exotic species (Table 2). Branch loss of exotics and natives in Puerto Rico, too, appeared to be equal (31% for exotics versus 27%, not statistically significant). With few exotic species in the urban forest population, natives also did not survive better in the southeastern US coastal plain during Hurricane Ivan.

The Survey

Arborists, urban foresters, and scientists confirmed many of our results about wind resistance but also provided new information about some species not frequently seen and measured in the urban forest. Consistent with our results, queen palm was ranked by the experts as the palm with the lowest wind resistance (Table 3). Royal palm and coconut palm were intermediate, again consistent with our results. Sabal palm was ranked high, which is consistent with our results from the tropical and northern areas of Florida (Duryea 1996; Duryea 1997; Duryea et al. 2007a). Some of the species with little information from our studies that were ranked high by the experts include pond apple (Annona glabra), cocoplum (Chrysobalanus icaco), and lignum vitae (Guaiacum sanctum). Species with little research information that were ranked with low wind resistance include weeping banyan, jacaranda (Jacaranda mimosifolia), and golden trumpet (Tabebuia chrysotricha). Species ranked with high wind resistance in agreement with our results were crape myrtle (Lagerstroemia indica), dahoon holly (Ilex cassine), southern magnolia (Magnolia grandiflora), sand live oak, live oak, and both species of cypress (Taxodium distichum and T. ascendens). One perplexing species is West Indian mahogany, which fared reasonably well in Georges and Andrew (Table 1); however, the survey respondents ranked it with medium to low wind resistance. In agreement with our results but in contrast to the survey results, another study of 24 species experiencing Hurricane Georges found West Indian mahogany had the best survival and the least branch loss (Francis 2000).

Recommendations

Taking the results from our studies and incorporating the survey results and the scientific literature, we have developed lists of relative wind resistance for tropical and subtropical tree species (Table 4). These lists should be used with caution, with the knowledge that no species and no tree is completely wind proof, and with the consideration of local soil conditions, tree age, structure and health, and other urban forest conditions. In addition, hurricane characteristics other than wind, such as rain amount and storm duration, can also influence the ability of trees to survive hurricanes. In their thorough review of forest damage from wind, Everham and Brokaw (1996) concluded that species differences do exist and can be explained by differences in wood density, canopy architecture, rooting patterns, susceptibility to diseases, and bole shape. Yet these differences, they say, can also be masked by varied soil conditions, exposure, wind intensity, and cultural practices.

Important Recommendations

- One of the most important findings reported is the rooting space results: the more rooting space that a tree has, the healthier it is, meaning better anchorage and resistance to wind.
- Another important cultural practice for broadleaved trees is pruning. Pruning conferred more wind resistance to trees and should be considered an important practice for tree health and wind resistance.
- Trees growing in groups or clusters were also more wind resistant compared to individual trees. This might be an especially good strategy for tree establishment in parks or larger yards.
Especially in south Florida, native trees appear to survive winds better than exotics. When considering species to plant, know which exotic species do not fare well in wind—one of these include melaleuca, Australian pine, queen palm, African tulip tree, and weeping banyan.

References

Table 1. Survival of tropical and subtropical tree species after four hurricanes*

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Survival (%) After Each Hurricane (Wind Speed in km/h; mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Georges (177 km/h; 110 mph)</td>
</tr>
<tr>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Araucaria heterophylla</td>
<td>84</td>
</tr>
<tr>
<td>Bucida buceras</td>
<td>—</td>
</tr>
<tr>
<td>Bursera simarouba</td>
<td>—</td>
</tr>
<tr>
<td>Callistemon viminalle</td>
<td>—</td>
</tr>
<tr>
<td>Carya floridana</td>
<td>—</td>
</tr>
<tr>
<td>Casuarina equisitifoliaa</td>
<td>—</td>
</tr>
<tr>
<td>Cinnamomum camphorab</td>
<td>—</td>
</tr>
<tr>
<td>Citrus spp.</td>
<td>—</td>
</tr>
<tr>
<td>Coccoloba uvifera</td>
<td>—</td>
</tr>
<tr>
<td>Delonix regia (in S. FL)</td>
<td>94</td>
</tr>
<tr>
<td>Eugenia foetida</td>
<td>—</td>
</tr>
<tr>
<td>Ficus aurea</td>
<td>—</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>76</td>
</tr>
<tr>
<td>Melaleuca quinquenerviaa</td>
<td>65</td>
</tr>
<tr>
<td>Persea americana</td>
<td>—</td>
</tr>
<tr>
<td>Quercus geminata</td>
<td>—</td>
</tr>
<tr>
<td>Quercus laurifolia</td>
<td>—</td>
</tr>
<tr>
<td>Quercus virginiana</td>
<td>—</td>
</tr>
<tr>
<td>Schefflera actinophylab (in C. and S. FL)</td>
<td>87</td>
</tr>
<tr>
<td>Swietenia mahagoni</td>
<td>92</td>
</tr>
<tr>
<td>Tabebuia heterophylla</td>
<td>83</td>
</tr>
<tr>
<td>Monocots – Palms</td>
<td></td>
</tr>
<tr>
<td>Chrysalidocarpus lutescens</td>
<td>94</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>77</td>
</tr>
<tr>
<td>Phoenix reclinata (in S. FL)</td>
<td>—</td>
</tr>
<tr>
<td>Phoenix roebelenii</td>
<td>—</td>
</tr>
<tr>
<td>Roystonea elata (R. borinquena in PR)</td>
<td>93</td>
</tr>
<tr>
<td>Sabal palmetto</td>
<td>—</td>
</tr>
<tr>
<td>Syagrus romanzoffianac (in S. FL)</td>
<td>—</td>
</tr>
<tr>
<td>Veitchia merrillii</td>
<td>89</td>
</tr>
<tr>
<td>Washingtonia robusta</td>
<td>—</td>
</tr>
<tr>
<td>Conifers</td>
<td></td>
</tr>
<tr>
<td>Pinus clausa</td>
<td>—</td>
</tr>
<tr>
<td>Pinus elliottii var. densa (P. caribaea in PR)</td>
<td>89</td>
</tr>
<tr>
<td>Pinus palustris</td>
<td>—</td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>—</td>
</tr>
</tbody>
</table>

*a Prohibited from use in Florida

*b Invasive and not recommended for use in Florida

+c Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)

*Survival is defined as the percentage of trees still standing after the hurricane. Numbers are only presented for tree species having a sample size greater than 20 trees for each hurricane. Least Significant Differences at p=0.05 are 16% for Georges, 35% for Jeanne, and 30% for Charley; Andrew survival percentages are from Duryea et al. 1996.
Table 2. Survival and branch loss of tree species in Puerto Rico after Hurricane Georges (110 mph)*

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>Sample Size</th>
<th>Survival (%)</th>
<th>Branch Loss (%)</th>
<th>Re-calculated Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Araucaria heterophylla</td>
<td>25</td>
<td>88</td>
<td>41</td>
<td>52</td>
</tr>
<tr>
<td>Bauhinia monandra</td>
<td>31</td>
<td>71</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>Bucida buceras</td>
<td>286</td>
<td>84</td>
<td>33</td>
<td>59</td>
</tr>
<tr>
<td>Callistemon citrinus</td>
<td>42</td>
<td>81</td>
<td>12</td>
<td>69</td>
</tr>
<tr>
<td>Calophyllum calaba (in S. FL)</td>
<td>295</td>
<td>93</td>
<td>20</td>
<td>81</td>
</tr>
<tr>
<td>Cassia javanica</td>
<td>28</td>
<td>86</td>
<td>42</td>
<td>57</td>
</tr>
<tr>
<td>Cassia siamea</td>
<td>94</td>
<td>85</td>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>Crescentia cujete</td>
<td>21</td>
<td>67</td>
<td>12</td>
<td>62</td>
</tr>
<tr>
<td>Cupressus sempervirens</td>
<td>31</td>
<td>29</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Delonix regia (in S. FL)</td>
<td>194</td>
<td>94</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>Enterolobium cyclocarpum</td>
<td>20</td>
<td>100</td>
<td>23</td>
<td>85</td>
</tr>
<tr>
<td>Eucalyptus robusta</td>
<td>69</td>
<td>86</td>
<td>59</td>
<td>28</td>
</tr>
<tr>
<td>Ficus benjamina</td>
<td>65</td>
<td>83</td>
<td>25</td>
<td>63</td>
</tr>
<tr>
<td>Ficus macrocarpa</td>
<td>33</td>
<td>76</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>Ficus microcarpa (in C. & S. FL)</td>
<td>22</td>
<td>100</td>
<td>25</td>
<td>73</td>
</tr>
<tr>
<td>Hibiscus elatus</td>
<td>25</td>
<td>100</td>
<td>63</td>
<td>20</td>
</tr>
<tr>
<td>Lagerstroemia speciosa</td>
<td>138</td>
<td>88</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>76</td>
<td>76</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td>Melaleuca quinquenervia</td>
<td>37</td>
<td>65</td>
<td>21</td>
<td>57</td>
</tr>
<tr>
<td>Melicoccus bijugatus</td>
<td>22</td>
<td>82</td>
<td>25</td>
<td>64</td>
</tr>
<tr>
<td>Pinus caribaea</td>
<td>53</td>
<td>89</td>
<td>16</td>
<td>85</td>
</tr>
<tr>
<td>Pterocarpus indicus</td>
<td>32</td>
<td>97</td>
<td>29</td>
<td>75</td>
</tr>
<tr>
<td>Pterocarpus macrocarpus</td>
<td>43</td>
<td>95</td>
<td>33</td>
<td>77</td>
</tr>
<tr>
<td>Schefflera actinophylla</td>
<td>24</td>
<td>88</td>
<td>17</td>
<td>79</td>
</tr>
<tr>
<td>Spathodea campanulata</td>
<td>24</td>
<td>67</td>
<td>52</td>
<td>37</td>
</tr>
<tr>
<td>Swietenia mahagoni</td>
<td>146</td>
<td>92</td>
<td>21</td>
<td>80</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>69</td>
<td>74</td>
<td>28</td>
<td>64</td>
</tr>
<tr>
<td>Swietenia macrophylla x mahagoni</td>
<td>36</td>
<td>89</td>
<td>43</td>
<td>58</td>
</tr>
<tr>
<td>Tabebuia heterophylla</td>
<td>334</td>
<td>83</td>
<td>26</td>
<td>65</td>
</tr>
<tr>
<td>Terminalia catappa (in S. FL)</td>
<td>44</td>
<td>89</td>
<td>35</td>
<td>52</td>
</tr>
<tr>
<td>Thuja orientalis</td>
<td>36</td>
<td>92</td>
<td>16</td>
<td>86</td>
</tr>
<tr>
<td>Least Significant Difference, p=0.05</td>
<td>—</td>
<td>16</td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>

*Reported rates exclude Palms (see Table 1). Re-calculated survival was calculated by subtracting trees with ≥ 50% branch loss. Numbers are only presented for tree species having a sample size greater than 20 trees for each hurricane.

*a Prohibited from use in Florida
*b Invasive and not recommended for use in Florida
*c Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)
Table 3. Survey results for wind resistance of tropical and subtropical tree species*

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wind Resistance</th>
<th>p-value</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>Acer rubrum</td>
<td>red maple</td>
<td>12 20</td>
<td>32 52</td>
<td>17 28</td>
</tr>
<tr>
<td>Annona glabra</td>
<td>pond apple</td>
<td>10 71</td>
<td>4 29</td>
<td>0 0</td>
</tr>
<tr>
<td>Araucaria heterophylla</td>
<td>Norfolk Island pine</td>
<td>8 18</td>
<td>14 31</td>
<td>23 51</td>
</tr>
<tr>
<td>Averrhoa carambola</td>
<td>star-fruit or carambola</td>
<td>3 18</td>
<td>6 35</td>
<td>8 47</td>
</tr>
<tr>
<td>Bauhinia blakeana</td>
<td>Hong Kong orchid</td>
<td>1 5</td>
<td>9 41</td>
<td>12 54</td>
</tr>
<tr>
<td>Bucida buceras</td>
<td>black olive</td>
<td>8 30</td>
<td>14 52</td>
<td>5 18</td>
</tr>
<tr>
<td>Bursera simarouba</td>
<td>gumbo limbo</td>
<td>21 64</td>
<td>10 30</td>
<td>2 6</td>
</tr>
<tr>
<td>Callistemon spp</td>
<td>bottlebrush</td>
<td>8 21</td>
<td>23 61</td>
<td>7 18</td>
</tr>
<tr>
<td>Calophyllum calaba (in S. FL)</td>
<td>Brazilian beautyleaf</td>
<td>6 38</td>
<td>8 50</td>
<td>2 12</td>
</tr>
<tr>
<td>Cassia fistula</td>
<td>golden shower</td>
<td>4 18</td>
<td>7 32</td>
<td>11 50</td>
</tr>
<tr>
<td>Ceiba (or Chorisia) speciosa</td>
<td>floss-silk</td>
<td>4 18</td>
<td>12 55</td>
<td>6 27</td>
</tr>
<tr>
<td>Chrysobalanus icaco</td>
<td>cocoplum</td>
<td>18 78</td>
<td>5 22</td>
<td>0 0</td>
</tr>
<tr>
<td>Chrysophyllum oliviforme</td>
<td>satinleaf</td>
<td>11 61</td>
<td>7 39</td>
<td>0 0</td>
</tr>
<tr>
<td>Citrus spp.</td>
<td>citrus (lime, orange, etc.)</td>
<td>18 44</td>
<td>18 44</td>
<td>5 12</td>
</tr>
<tr>
<td>Cocoscoloba diversifolia</td>
<td>pigeon plum</td>
<td>11 58</td>
<td>8 42</td>
<td>0 0</td>
</tr>
<tr>
<td>Cocoscoloba uifera</td>
<td>sea grape</td>
<td>18 50</td>
<td>12 33</td>
<td>6 17</td>
</tr>
<tr>
<td>Conocarpus erectus</td>
<td>buttonwood</td>
<td>11 35</td>
<td>17 55</td>
<td>3 10</td>
</tr>
<tr>
<td>Cordia sebestena</td>
<td>geiger tree</td>
<td>8 33</td>
<td>13 54</td>
<td>3 12</td>
</tr>
<tr>
<td>x Cupressocyparis leylandii</td>
<td>leyland cypress</td>
<td>7 22</td>
<td>13 41</td>
<td>12 37</td>
</tr>
<tr>
<td>Delonix regia (in S. FL)</td>
<td>royal poinciana</td>
<td>2 6</td>
<td>20 63</td>
<td>10 31</td>
</tr>
<tr>
<td>Enterolobium cyclocarpum</td>
<td>ear tree</td>
<td>1 5</td>
<td>7 33</td>
<td>13 62</td>
</tr>
<tr>
<td>Eriobotrya japonica (in S. & C. FL)</td>
<td>loquat</td>
<td>9 24</td>
<td>24 63</td>
<td>5 13</td>
</tr>
<tr>
<td>Eucalyptus cinerea</td>
<td>silver dollar eucalyptus</td>
<td>2 13</td>
<td>9 56</td>
<td>5 31</td>
</tr>
<tr>
<td>Eugenia axillaris</td>
<td>white stopper</td>
<td>7 64</td>
<td>3 27</td>
<td>1 9</td>
</tr>
<tr>
<td>Eugenia foetida</td>
<td>boxleaf, Spanish stopper</td>
<td>7 64</td>
<td>2 18</td>
<td>2 18</td>
</tr>
<tr>
<td>Ficus aurea</td>
<td>strangler fig</td>
<td>4 36</td>
<td>5 46</td>
<td>2 18</td>
</tr>
<tr>
<td>Ficus benjamina</td>
<td>weeping banyan</td>
<td>0 0</td>
<td>2 18</td>
<td>9 82</td>
</tr>
<tr>
<td>Grevillea robusta</td>
<td>silk oak</td>
<td>1 4</td>
<td>8 32</td>
<td>16 64</td>
</tr>
<tr>
<td>Guaiacum sanctum</td>
<td>lignumvitae</td>
<td>10 83</td>
<td>2 17</td>
<td>0 0</td>
</tr>
<tr>
<td>Ilex cassine</td>
<td>dahoon holly</td>
<td>35 76</td>
<td>10 22</td>
<td>1 2</td>
</tr>
<tr>
<td>Jacaranda mimosifolia</td>
<td>jacaranda, black poui</td>
<td>1 7</td>
<td>2 13</td>
<td>12 80</td>
</tr>
<tr>
<td>Juniperus silicicola</td>
<td>SE red cedar</td>
<td>14 28</td>
<td>18 35</td>
<td>19 37</td>
</tr>
<tr>
<td>Kigelia pinnata</td>
<td>sausage tree</td>
<td>7 41</td>
<td>6 35</td>
<td>4 24</td>
</tr>
<tr>
<td>Koelreuteria paniculata</td>
<td>golden raintree</td>
<td>11 37</td>
<td>11 37</td>
<td>8 26</td>
</tr>
<tr>
<td>Krugiodendron ferreum</td>
<td>ironwood</td>
<td>10 77</td>
<td>3 23</td>
<td>0 0</td>
</tr>
<tr>
<td>Lagerstroemia indica</td>
<td>crape myrtle</td>
<td>55 83</td>
<td>11 17</td>
<td>0 0</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>privet</td>
<td>30 75</td>
<td>9 23</td>
<td>1 2</td>
</tr>
<tr>
<td>Liquidambar styraciflua</td>
<td>sweetgum</td>
<td>19 43</td>
<td>22 50</td>
<td>3 7</td>
</tr>
<tr>
<td>Litchi chinensis</td>
<td>lichee</td>
<td>8 57</td>
<td>5 36</td>
<td>1 7</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Wind Resistance</td>
<td>p-value</td>
<td>Total N</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Lysiloma latisiliqua</td>
<td>wild tamarind</td>
<td>9</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Magnolia grandiflora</td>
<td>SE magnolia</td>
<td>45</td>
<td>82</td>
<td>9</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>mango tree</td>
<td>6</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Peltophorum pterocarpa</td>
<td>yellow poinciana</td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Persea americana</td>
<td>avocado tree</td>
<td>1</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Pinus clausa</td>
<td>sand pine</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pinus elliottii var. densa</td>
<td>FL slash pine</td>
<td>18</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Pinus palustris</td>
<td>longleaf pine</td>
<td>23</td>
<td>56</td>
<td>13</td>
</tr>
<tr>
<td>Podocarpus spp.</td>
<td>podocarpus</td>
<td>24</td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td>Prunus caroliniana</td>
<td>carolina laurel cherry</td>
<td>5</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Quercus geminata</td>
<td>sand live oak</td>
<td>36</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>Quercus laurifolia</td>
<td>laurel oak</td>
<td>3</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Quercus nigra</td>
<td>water oak</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Quercus stellata</td>
<td>post oak</td>
<td>5</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>Quercus virginiana</td>
<td>live oak</td>
<td>64</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>Sideroxylon foetidissimum</td>
<td>mastic tree</td>
<td>3</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>Simarouba glauca</td>
<td>paradise tree</td>
<td>5</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>Spathodea campanulata</td>
<td>African tuliptree</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Swietenia mahagoni</td>
<td>West Indian mahagoni</td>
<td>2</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Tabebuia aurea</td>
<td>silver trumpet</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Tabebuia chrysotricha</td>
<td>golden trumpet</td>
<td>2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Tabebuia heterophylla</td>
<td>white cedar</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Tabebuia impetiginosa</td>
<td>purple tabebuia, ipe</td>
<td>3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Tecoma stans</td>
<td>yellow elder</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Terminalia catappa † (in S. FL)</td>
<td>tropical almond</td>
<td>3</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>baldcypress</td>
<td>59</td>
<td>91</td>
<td>6</td>
</tr>
<tr>
<td>Taxodium ascendens</td>
<td>pondcypress</td>
<td>41</td>
<td>91</td>
<td>4</td>
</tr>
</tbody>
</table>

Palms

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wind Resistance</th>
<th>p-value</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Butia capitata</td>
<td>pindo</td>
<td>34</td>
<td>79</td>
<td>7</td>
</tr>
<tr>
<td>Caryota mitis</td>
<td>fishtail</td>
<td>8</td>
<td>38</td>
<td>6</td>
</tr>
<tr>
<td>Chrysalidocarpus lutescens</td>
<td>areca</td>
<td>19</td>
<td>63</td>
<td>11</td>
</tr>
<tr>
<td>Coccolthrinax argentata</td>
<td>FL silver, silver thatch</td>
<td>21</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>coconut</td>
<td>22</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td>Hyophorbe lagenicaulis</td>
<td>bottle</td>
<td>13</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>Hyophorbe verschaffeltii</td>
<td>spindle</td>
<td>11</td>
<td>79</td>
<td>2</td>
</tr>
<tr>
<td>Latania loddigesii</td>
<td>blue latan</td>
<td>8</td>
<td>67</td>
<td>3</td>
</tr>
<tr>
<td>Livistona chinensis ‡ (in S. & C. FL)</td>
<td>chinese fan</td>
<td>29</td>
<td>71</td>
<td>9</td>
</tr>
<tr>
<td>Neodypsis decaryi</td>
<td>triangle</td>
<td>14</td>
<td>58</td>
<td>6</td>
</tr>
<tr>
<td>Phoenix canariensis</td>
<td>Canary Island date</td>
<td>49</td>
<td>89</td>
<td>4</td>
</tr>
<tr>
<td>Phoenix dactylifera</td>
<td>date</td>
<td>33</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>Phoenix reclinata † (in S. FL)</td>
<td>Senegal date</td>
<td>29</td>
<td>85</td>
<td>5</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Wind Resistance</td>
<td>p-value</td>
<td>Total N</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>%</td>
<td>Medium</td>
</tr>
<tr>
<td>Phoenix roebelenii</td>
<td>pygmy date</td>
<td>40</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td>Ptychosperma elegans</td>
<td>Alexander, solitary</td>
<td>16</td>
<td>73</td>
<td>6</td>
</tr>
<tr>
<td>Roystonea elata</td>
<td>Florida royal</td>
<td>19</td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>Roystonea regia</td>
<td>Cuban royal</td>
<td>17</td>
<td>61</td>
<td>10</td>
</tr>
<tr>
<td>Sabal palmetto</td>
<td>cabbage</td>
<td>71</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Syagrus romanzoffiana (in S. FL)</td>
<td>queen</td>
<td>5</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Thrinax morrisii</td>
<td>Key thatch</td>
<td>13</td>
<td>87</td>
<td>2</td>
</tr>
<tr>
<td>Thrinax radiata</td>
<td>Florida thatch</td>
<td>17</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>Veitchia merrillii</td>
<td>Manila, Christmas</td>
<td>13</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>Washingtonia robusta</td>
<td>Washington fan</td>
<td>29</td>
<td>54</td>
<td>16</td>
</tr>
</tbody>
</table>

b Invasive and not recommended for use in Florida
< Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)
*Results of the survey of arborists, scientists, and urban foresters in Florida with their rankings for wind resistance of tropical and subtropical tree species. N is the number of respondents for each species, out of a total of 85 experts. P-values from the chi-square test for equal proportions indicate the significance level for one or more of the categories being different from the others; n.s. means that there is no significant difference between the categories of high, medium, and low (p>0.05).
<table>
<thead>
<tr>
<th>Table 4. Wind resistance of tropical and subtropical tree species*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Wind Resistance</td>
</tr>
<tr>
<td>Dicots</td>
</tr>
<tr>
<td>Bursera simaruba, gumbo limbo</td>
</tr>
<tr>
<td>Carya floridana, Florida scrum hickory</td>
</tr>
<tr>
<td>Conocarpus erectus, buttonwood</td>
</tr>
<tr>
<td>Chrysobalanus icaco, cocoplum</td>
</tr>
<tr>
<td>Cordia sebestena, geiger tree</td>
</tr>
<tr>
<td>Eugenia axillaris, white stopper</td>
</tr>
<tr>
<td>Eugenia confusa, redberry</td>
</tr>
<tr>
<td>Eugenia foetida, boxleaf stopper</td>
</tr>
<tr>
<td>Guadua sanctum, lignum vitae</td>
</tr>
<tr>
<td>Ille x cassin, dahoon holly</td>
</tr>
<tr>
<td>Krugiodendrum ferreum, ironwood</td>
</tr>
<tr>
<td>Magnolia grandiflora, southern magnolia</td>
</tr>
<tr>
<td>Podocarpus spp, Podocarpus Quercus virginiana, live oak</td>
</tr>
<tr>
<td>Quercus geminata, sand live oak</td>
</tr>
<tr>
<td>Conifers</td>
</tr>
<tr>
<td>Taxodium ascendens, pondcypress</td>
</tr>
<tr>
<td>Taxodium distichum, baldcypress</td>
</tr>
<tr>
<td>Palms</td>
</tr>
<tr>
<td>Butia capitata, pindo or jelly</td>
</tr>
<tr>
<td>Dypsis lutescens, areca</td>
</tr>
<tr>
<td>Cocothrinax argentata, Florida silver</td>
</tr>
<tr>
<td>Hyophorbe lagenicaulis, bottle</td>
</tr>
<tr>
<td>Hyophorbe versuschaffeltii, spindle</td>
</tr>
<tr>
<td>Latania loddigesii, blue latan</td>
</tr>
<tr>
<td>Livistona chinensis, Chinese fan b</td>
</tr>
<tr>
<td>Phoenix canariensis, Canary Island date</td>
</tr>
<tr>
<td>Phoenix dactylifera, date</td>
</tr>
<tr>
<td>Phoenix reclinata, Senegal date b</td>
</tr>
<tr>
<td>Phoenix roebelenii, pygmy date</td>
</tr>
<tr>
<td>Ptychoesperma elegans, Alexander</td>
</tr>
<tr>
<td>Sabal palmetto, cabbage, sabal</td>
</tr>
<tr>
<td>Thrinax morrisii, key thatch</td>
</tr>
<tr>
<td>Thrinax radiata, Florida thatch</td>
</tr>
<tr>
<td>Veitchia merrillii, Manila</td>
</tr>
<tr>
<td>Fruit Trees</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>Medium–Low Wind Resistance</td>
</tr>
<tr>
<td>Dicots</td>
</tr>
<tr>
<td>Acer rubrum, red maple</td>
</tr>
<tr>
<td>Bauhinia blakeana, Hong-Kong orchid</td>
</tr>
<tr>
<td>Bucidas buceras, black olive</td>
</tr>
<tr>
<td>Callistemon spp, bottlebrush</td>
</tr>
<tr>
<td>Cinnamomum camphora, camphor b</td>
</tr>
<tr>
<td>Delonix regia, royal poinciana a</td>
</tr>
<tr>
<td>Enterolobium cyclocarpum, ear tree</td>
</tr>
<tr>
<td>Eriobotrya japonica, lokuat</td>
</tr>
<tr>
<td>Eucalyptus cinedere, silverdollor eucalyptus</td>
</tr>
<tr>
<td>Ficus aurea, strangler fig</td>
</tr>
<tr>
<td>Kigelia pinnata, sausage tree</td>
</tr>
<tr>
<td>Myrica cerifera, wax myrtle</td>
</tr>
<tr>
<td>Persea borbonia, redbay</td>
</tr>
<tr>
<td>Platanus occidentalis, sycamore</td>
</tr>
<tr>
<td>Quercus laurifolia, laurel oak</td>
</tr>
<tr>
<td>Tabebuia heterophylla, pink trumpet tree</td>
</tr>
<tr>
<td>Terminalia catappa, tropical almond c</td>
</tr>
<tr>
<td>Dicots</td>
</tr>
<tr>
<td>Annona glabra, pond apple</td>
</tr>
<tr>
<td>Calophyllum calaba, Brazilian beautyleaf</td>
</tr>
<tr>
<td>Chrysophyllum oliviforme, satellite</td>
</tr>
<tr>
<td>Coccoloba uvifera, sea grape</td>
</tr>
<tr>
<td>Coccoloba diversifolia, pigeon plum</td>
</tr>
<tr>
<td>Liquidambar styraciflua, sweetgum</td>
</tr>
<tr>
<td>Lysiloma latisilqua, wild tamarind</td>
</tr>
<tr>
<td>Magnolia virginiana, sweetbay magnolia</td>
</tr>
<tr>
<td>Nyssa sylvatica, black tupelo</td>
</tr>
<tr>
<td>Sideroxylon foetidissimum, mastic</td>
</tr>
<tr>
<td>Simarouba glauca, paradise tree</td>
</tr>
<tr>
<td>Swietenia mahagoni, mahogany</td>
</tr>
<tr>
<td>Conifers</td>
</tr>
<tr>
<td>Taxodium ascendens, pondcypress</td>
</tr>
<tr>
<td>Taxodium distichum, baldcypress</td>
</tr>
<tr>
<td>Palms</td>
</tr>
<tr>
<td>Caryota mitis, fishtail</td>
</tr>
<tr>
<td>Cocos nucifera, coconut</td>
</tr>
<tr>
<td>Dypsis decary, triangle</td>
</tr>
<tr>
<td>Roystonea elata, royal</td>
</tr>
<tr>
<td>Fruit Trees</td>
</tr>
<tr>
<td>Litchi chinensis, lychee</td>
</tr>
<tr>
<td>Lowest Wind Resistance</td>
</tr>
<tr>
<td>Dicots</td>
</tr>
<tr>
<td>Casuarina equisetifolia, Australian pine a</td>
</tr>
<tr>
<td>Cassia fistula, golden shower</td>
</tr>
<tr>
<td>Chorisia speciosa, floss-silk tree</td>
</tr>
<tr>
<td>Ficus benjaminina, weeping banyan</td>
</tr>
<tr>
<td>Grevillea robusta, silk oak</td>
</tr>
<tr>
<td>Jacaranda mimosifolia, jacaranda</td>
</tr>
<tr>
<td>Melaleuca quinquenervia, melaleuca a</td>
</tr>
<tr>
<td>Quercus nigra, water oak</td>
</tr>
<tr>
<td>Peltophorum pterocarpus, yellow poinciana</td>
</tr>
<tr>
<td>Prunus caroliniana, Carolina laurelcherry</td>
</tr>
<tr>
<td>Sapium sebiferum, Chinese tallow</td>
</tr>
<tr>
<td>Spathodea campanulata, African tuliptree</td>
</tr>
<tr>
<td>Tabebuia caraiba, silver trumpet tree</td>
</tr>
<tr>
<td>Ulmus parvifolia, Chinese elm</td>
</tr>
<tr>
<td>Conifers</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Pinus elliottii, slash pine</td>
</tr>
<tr>
<td>Pinus palustris, longleaf pine</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Palms</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fruit trees</td>
</tr>
<tr>
<td>Averrhoa carambola, star-fruit, carambola</td>
</tr>
<tr>
<td>Citrus spp, oranges, limes, grapefruits</td>
</tr>
<tr>
<td>Mangifera indica, mango</td>
</tr>
</tbody>
</table>

\(^a\) Prohibited from use in Florida
\(^b\) Invasive and not recommended for use in Florida
\(^c\) Caution: may be used but must be managed to prevent escape in Florida (Fox et al. 2005)

Wind resistance of tropical and subtropical tree species as estimated utilizing the hurricane measurements and the survey results in this study, and the scientific literature cited throughout this publication.
Applying for Assistance
Six Steps in Making an Insurance Claim

Michael T. Olexa and Lauren Grant

Step One: Contact Your Agent Immediately

- Give your name, address, policy number, and the date and time of your loss.
- Make sure to tell your insurance agent where you can be reached, especially if you are unable to stay in your home.
- Follow up the call with a letter detailing the problem. Keep a copy of the letter.
- Your insurance agent will arrange for an adjustor to visit your property and assess the damage. Be sure the adjustor is properly licensed. In Florida, call the Department of Financial Services Consumer Help Line, toll-free, at 1-877-693-5236. Check online or in a phone book for your state’s insurance consumer help line.

Step Two: Carefully Document Your Losses

Safety First! Before entering a building, always check for structural damage. Do not go inside the building if there is any chance of the building collapsing. Be careful walking around. Upon entering the building, do not use open flames since gas may be trapped inside. Instead, use your flashlight to light your way. Keep power off until an electrician has inspected your system for safety.

- Make a detailed list of lost or damaged property.
- Videotape and/or photograph damaged property before beginning any repairs.
- Do not throw away damaged property without your adjustor’s approval.
- Try to document the value of each object lost. Bills of sale, canceled checks, charge account records, and insurance evaluations are good evidence. If you have no such records, estimate the value, and give purchase place and date of purchase. Include this information with your list.
- List cleaning and repair bills, including materials, cost of rental equipment, and depreciation of purchased equipment.
- List any additional living expenses you incur if your home is so severely damaged that you have to find other accommodations while repairs are being made (this includes motel bills, restaurant bills, home rental, and/or car rental).
Step Three: Protect Your Property from Further Damage or Theft

- Patch roofs temporarily. Cover broken windows with boards or plastic.
- If household furnishings are exposed to weather, move them to a safe location for storage.
- Remember the documentation from Step Two! Save receipts for what you spend and submit them to your insurance company for reimbursement.
- If your home has been flooded, protect your family’s health by cleaning your home right away. Floodwaters pick up sewage and chemicals from roads, farms, and factories. Throw out foods and medicines that may have come into contact with floodwater. Dry out water-damaged furnishings and clothing as soon as possible to prevent fading and deterioration.

Step Four: Working with Adjustor

- Your insurance agent will arrange for an adjustor to visit your property and assess the damage. Be sure the adjustor is properly licensed. In Florida, call the Department of Financial Services Consumer Help Line, toll-free, at 1-877-693-5236. Check online or in a phone book for your state’s insurance consumer help line.
- Be sure that you or a trusted advisor is present when the adjustor visits the site.
- Work with the adjustor. It is the adjustor’s job to assist you and review your claim. The adjustor will inspect your list of lost or damaged property. The adjustor will work with you to calculate the value of the items on the list and prepare a repair estimate of damage to the property.
- You and your adjustor need to come to an agreement as to the scope of damage, which is an agreement as to what needs to be repaired or replaced without a dollar amount.
- Make sure you know what needs to be done to follow up on this agreement and why. If you do not understand what needs to be done, ask the adjustor for instructions in writing.

Step Five: Settling Your Claim

- You may settle personal property and structural claims at separate times, although your adjustor may suggest that you file the claims together. Filing separately allows you to take the time needed to determine the full extent of your losses.
- Do not be in a hurry to settle your claim. Although you may want to have your damage claim settled as quickly as possible, it is sometimes advisable to wait until all the damage has been discovered. Damages overlooked in an early estimate may become apparent later. If you are dissatisfied with the settlement offer, talk things over with your agent and adjustor.
- If you and your adjustor cannot reach a settlement, you may obtain mediation through your state’s department of insurance. Mediation is an informal process where a neutral third party tries to help the parties resolve the dispute. In Florida, call the Department of Financial Services Consumer Help Line, toll-free, at 1-877-693-5236 for information on mediation or other methods of dispute resolution. Check online or in a phone book for your state’s insurance consumer help line.

Step Six: Repairing Your Home

- You or your insurance company may contract for the repair of your home. Make sure the contractor is a reputable firm that is both licensed and insured. You can find out whether the contractor holds a proper license by contacting your state’s department of business regulations. In Florida, contact the Department of Business and Professional Regulation online, or call 1-850-487-1395 (this is not a toll-free number).
- Beware of door-to-door sellers when choosing a contractor to make repairs. Sometimes undependable workers enter a damaged area, make cheap repairs, and leave before the residents discover that the repairs are inadequate. If your local contractor cannot do the work, ask the contractor to recommend someone.
- Get a written estimate that includes any oral promises the contractor made. Always ask if there is a charge for an estimate before allowing anyone into your home.
- Your insurance company may initially pay you a sum equal to the actual cash value, unless you request minimal repairs. The company will withhold the balance of the full replacement cost until after you complete the repairs.

Sources for This Publication

Individual Assistance Programs from FEMA\(^1\)

Michael T. Olexa and Lauren Grant\(^2\)

Introduction

Individuals, families, and businesses may be eligible for federal assistance if they live, own a business, or work in a county declared a Major Disaster Area; incur sufficient property damage or loss; and depending on the type of assistance, do not have the insurance or other resources to meet their needs.

The Federal Emergency Management Agency (FEMA) and other federal, state, local, and volunteer agencies offer disaster assistance in several forms:

- Low-interest loans
- Individual and Family Grant (IFG) program
- Veterans benefits
- Temporary housing assistance
- Tax refunds
- Excise tax relief
- Free legal counseling
- Crisis counseling

- Getting in touch with family members
- Your rights
- Florida emergency information line

You can learn more about FEMA's programs online at https://www.fema.gov/disaster-process-disaster-aid-programs

Low-Interest Loans

Most, but not all, federal assistance is in the form of low interest loans to cover expenses not covered by state programs, local programs, or private insurance. People who do not qualify for loans may be able to apply for cash grants.

These agencies offer low interest loans to eligible farmers, business owners, and other individuals to repair or replace damaged property and personal belongings not covered by insurance.

2. Michael T. Olexa, professor, Department of Food and Resource Economics, and director, Center for Agricultural and Natural Resource Law, UF/IFAS Extension, Gainesville, FL. Lauren Grant, Levin College of Law, University of Florida, Gainesville, FL.

This publication is designed to provide accurate, current, and authoritative information on the subject. However, since the laws, regulations, administrative rulings, and court decisions on which it is based are subject to constant revision, portions of this publication could become outdated at any time. This publication is distributed with the understanding that the authors are not engaged in rendering legal advice or opinions, and the information contained herein should not be regarded, or relied upon, as a substitute for legal advice or opinion. For these reasons, the utilization of these materials by any person constitutes an agreement to hold harmless the authors, the Institute of Food and Agricultural Sciences, and the University of Florida for any liability claims, damages, or expenses that may be incurred by any person as a result of reference to or reliance on the information contained in this fact sheet.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county's UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.
Individual Assistance Programs from FEMA

- Small Business Administration (SBA). Access online at https://www.sba.gov/content/apply-disaster-loan
- Individuals and Households (IHP) Program
 IHP provides cash grants up to a limit, which is adjusted annually for inflation. More information is available at the FEMA website. Access online at https://www.fema.gov/recovery-directorate/assistance-individuals-and-households
 Individuals may be eligible for grants to help recover necessary expenses and serious needs that cannot be met through insurance or other forms of disaster assistance. Examples are housing, personal property, medical, dental, funeral, transportation, and required flood insurance premiums incurred as a result of the disaster.
- Veterans Benefits
 The Department of Veterans Affairs (VA) provides veterans with death benefits, pensions, insurance settlements, and adjustments to home mortgages. More information is available at the VA website. Access online at http://www.va.gov
- Temporary Housing Assistance
 This program assures that people whose homes are damaged by disaster have a safe place to live until repairs can be completed. The program is designed to provide funds for expenses that are not covered by insurance. Displaced homeowners and renters must be legal residents of the United States to be eligible. Program services include
 - Home repair assistance
 - Rental assistance
 - Mortgage and rental assistance (MRA)
 - If necessary, referral to other government housing programs
 More information is available at the FEMA website. Access online at http://www.fema.gov/disaster-assistance-available-fema
- Tax Refunds
 The Internal Revenue Service (IRS) allows certain casualty losses to be deducted on federal income tax returns for the year of the loss or through an immediate amendment to the previous year's return.
- Excise Tax Relief
 Under various circumstances, businesses may file claims with the Bureau of Alcohol, Tobacco, and Firearms (ATF) for federal excise taxes paid on alcoholic beverages and tobacco products lost, rendered unmarketable, or condemned by a duly authorized official. One such circumstance is when the President has declared a major disaster. More information is available at the FEMA website. Access online at http://www.fema.gov/pdf/emergency/nrf/nrf-esf-06.pdf
- Unemployment Benefits
 Disaster unemployment assistance and unemployment insurance benefits may be available through the state unemployment office and supported by the United States Department of Labor (DOL). More information about Disaster Unemployment Assistance (DUA) is available at the DOL website. Access online at http://workforcesecurity.doleta.gov/unemploy/disaster.asp
 Residents of Florida: If you work or reside in an officially declared disaster county and are now unemployed as a result of the disaster, you may be eligible for Unemployment Compensation Benefits or Disaster Unemployment Assistance. More information is available at the Florida Jobs website. Access online at http://www.floridajobs.org/office-directory/division-of-workforce-services/reemployment-assistance-programs/disaster-unemployment-assistance
- Free Legal Counseling
 The Young Lawyers Division of the American Bar Association, through an agreement with FEMA, provides free legal advice for low-income individuals regarding cases that will not produce a fee (i.e., those cases where attorneys are only paid part of the settlement, which is awarded by the court). Cases that may generate a fee are turned over to the local lawyer referral service.
- Crisis Counseling
 The purpose of the crisis counseling program is to help disaster survivors cope with grieving, stress, or other mental health problems caused or aggravated by a disaster
or its aftermath. These short-term services, provided by FEMA as supplemental funds granted to state and local mental health agencies, are available only to eligible survivors of presidentially-declared major disasters. Those who may require this confidential service should inquire about it while registering for disaster assistance.

Crisis counseling services are also offered by the American Red Cross (http://www.redcrosslv.org/disaster.html), churches, synagogues, and other service agencies. Mental health information may be found at the website for the United States Department of Health and Human Services, Substance Abuse and Mental Health Services Administration. Access online at http://www.samhsa.gov/find-help/disaster-distress-helpline

Contacting Family Members

The American Red Cross maintains a database to help you find family. Contact your local American Red Cross chapter. Do not contact the chapter in the disaster area. More information is available at the Red Cross website. Access online at http://www.redcross.org/find-help/contact-family

Florida Emergency Information Line

The Florida Emergency Information Line (FEIL) is a toll-free hotline providing accurate and up-to-date information regarding an emergency or disaster situation impacting Florida. The FEIL hotline is 1-800-342-3557. More information is available at the Florida Division of Emergency Management Website. Access online at http://www.floridadisaster.org/feil.htm

Your Rights

Each federal agency that provides federal financial assistance is responsible for investigating complaints of discrimination in the use of its funds. If you believe that you or others protected by civil rights laws have been discriminated against in receiving disaster assistance, you may contact one of FEMA’s Equal Rights Officers (ERO), who has the job of ensuring equal access to all FEMA disaster programs. The ERO will attempt to resolve your issues.

In addition to these services, FEMA and other federal, state, and local agencies provide assistance with the following:

- Business Loan Program
- Consumer Services
- Disaster Unemployment Assistance
- Emergency Assistance
- Federal Tax Assistance
- Financial Counseling
- Hazard Mitigation
- Home and Personal Property Loan Program
- Insurance Information
- Social Security

More information on these services is available at the FEMA website. Access online at http://www.fema.gov/apply-assistance

Sources for This Publication

- Florida Department of Community Affairs/Division of Emergency Management. Access online at http://www.floridadisaster.org/index.asp
- American Red Cross Disaster Services. Access online at http://www.redcross.org/
Introduction

1. Where to Apply for Assistance

2. USDA Assistance Available in Areas Designated as Natural Disaster Areas

3. USDA Assistance Available in Areas without a Determination of Major Disaster

Where to Apply for Assistance

Every county in the United States has a USDA agency office that can help citizens find the right place to apply for the assistance they need. Applications and information about emergency food assistance can be obtained at any state or local government food assistance office (e.g., SNAP—Supplemental Nutrition Assistance Program, formerly known as Food Stamps Program). Find the location of your county office online at the United States Department of Agriculture (USDA) website. Access online at http://www.fns.usda.gov/snap/Default.htm

For assistance for Indian tribes, first contact the nearest tribal office or the Bureau of Indian Affairs (BIA), United States Department of the Interior.

USDA Assistance Available in Areas Designated as Natural Disaster Areas -- Emergency Loans

The Farm Service Agency (FSA) provides emergency loans to help cover production and physical losses in counties declared as disaster areas by the President, or designated by the Secretary of Agriculture as a disaster area or quarantine area. Additionally, emergency farm loans for physical losses may be authorized by the FSA Administrator.

The loan limit is up to 100 percent of actual production or physical losses, with a cap of $500,000.

Depending upon the loan purpose, repayment ability, and the collateral available as loan security, you will normally have from one to seven years to repay loans for crop, livestock, and non-real estate losses. Loans for physical losses to real estate are normally repaid within thirty years.
In unusual circumstances, repayment may be extended. The current annual interest rate is 3.75 percent.

Eligibility for USDA Loans
- You must be an established family farm operator
- You must be a citizen or permanent resident of the United States
- You must have the ability, training, or experience to repay the loan
- You must have suffered a qualifying physical loss, or a production loss of at least 30 percent in any essential farm or ranch enterprise
- You must not be able to obtain commercial credit
- You must provide collateral to secure the loan
- The agency must receive your application within eight months of the disaster designation date
- You must operate in accordance with a farm plan that you develop and that the FSA and you agree upon
- You may be required to participate in a financial management training program
- You may be required to obtain crop insurance

USDA Loan Uses
- Restore or replace essential property
- Pay all or part of production costs associated with the disaster year
- Pay essential family living expenses
- Reorganize the farming operation
- Refinance debts

USDA Assistance Available in Areas without a Major Determination of Disaster

USDA Crop Insurance
With the passage of the Federal Agriculture Improvement and Reform Act of 1996, producers are responsible for more of their agricultural risks than ever before. Crop insurance is one way producers can address their own risk management needs. The USDA created the Risk Management Agency (RMA) in 1996 to administer the federal crop insurance program and to provide producers with risk education and access to other risk management tools.

Producers must sign up for crop insurance in advance of the growing season. If you have crop insurance provided through the RMA, you can be reimbursed for unavoidable crop losses. When a disaster occurs, immediately contact your insurance provider to provide a “notice of loss.” Your insurance provider will make the necessary arrangements to have a loss adjustor visit your farm to determine the extent of the damage and to fill out the necessary paperwork.

Non-Insured Crop Disaster Assistance Program (NAP)
The Non-insured Crop Disaster Assistance Program (NAP) provides assistance to reduce financial losses that occur when natural disasters cause a catastrophic loss of production or prevent planting of an eligible crop.

Eligible crops include commercial crops or other agricultural commodities (except livestock) for which catastrophic risk protection under Section 508(b) of the Federal Crop Insurance Act is not available. In addition to the requirement that the crops be uninsurable, the crops must also be grown for food, livestock consumption, or fiber, or must be grown in a controlled environment as a specialty crop, a value loss crop (such as aquaculture and Christmas trees), sea oats, or sea grass, or seed crops where the seeds will be sold for other NAP-eligible crops.

Payment eligibility is based on an expected yield for the area and the producer's approved yield based on actual production history. If sufficient production records are unavailable, payment eligibility may be based on a transitional yield. A producer must demonstrate that a natural disaster has reduced the expected crop yield by more than 50 percent or prevented the planting of at least 35 percent of the crop acreage.

- **Beneficiaries:** Landowners, tenants, and sharecroppers who share in the risk of crop production and have a nonfarm adjusted gross income of less than $500,000.
- **Limitations:** Producers must report acreage and production by specified deadlines and furnish a timely notice of loss within 15 days of the date when a loss becomes obvious. Additionally, applications for NAP payments must be filed with the local office no later than the first acreage reporting date for the crop in the crop year immediately following the crop year in which the loss occurred.
- **Eligibility:** Payments for a crop year are capped at $125,000. If a producer is eligible to receive assistance and benefits for the same crop loss under any other program administered by the USDA, the producer must choose
whether to receive the other program benefits or NAP assistance. The producer is not eligible for both.

Rural Development Program

Information about the Rural Development Program is available online at the USDA website. Access online at http://www.rurdev.usda.gov/

- Rural Business Service: This Service provides direct and guaranteed rural economic loans and rural business enterprise grants. Programs are offered to businesses and cooperatives affected by natural disasters.

- Rural Housing Service: This Service provides subsidized direct and guaranteed loans to low-income rural residents and communities in need of housing or community facilities. When needed, existing borrowers are offered loan forbearance to recover from the effects of a natural disaster.

- Rural Utilities Service: This Service provides electric and telecommunications cooperatives and companies financed by the Rural Utilities Service with technical and/or loan assistance for restoration of service after a natural disaster.

USDA Food Assistance

- Foods donated for school food services and other Food and Nutrition Service programs may be released to relief organizations that prepare meal services in situations of distress.

- Additionally, the Secretary of Agriculture may authorize state and local agencies to make supplemental nutrition assistance available during any disaster that disrupts commercial channels of food distribution. Such assistance may be determined to be necessary if, as a result of the disaster, income or resources are reduced or inaccessible, and households need food assistance that cannot be met by the regular Food and Nutrition Service Program procedures.

USDA Technical Assistance

- Animal Diseases and Plant Pest Control: The Animal and Plant Health Inspection Service’s regional emergency response organizations have a network with animal health officials in every state and also have their own personnel who can advise and assist in disaster responses involving control, movement, euthanasia, and disposal of livestock and poultry. The main APHIS customer service call center phone number is 1-844-820-2234. Local phone numbers would be established in the event of an emergency response.

- Food Safety: When food safety questions arise due to reasons such as power failure, natural disaster, or product recalls, the Food Safety and Inspection Service helps consumers through its toll-free meat and poultry hotline. Consumers may call 1-888-674-6854, Monday through Friday, from 10 a.m. to 4 p.m. Eastern Standard Time.

USDA Non-Discrimination Statement

The USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. However, not all prohibited bases apply to all programs. Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center in Washington, D.C. at 1-202-720-2600 (voice and TDD) (this is not a toll-free number). Alternatively, persons may dial 1-844-433-2774 (toll-free nationwide).

Source for This Publication

Introduction
After a disaster, you may need to seek financial assistance to restore your home or farm. There are many sources of assistance, but you will be required to provide certain information. The lists below can help you assemble the necessary information before you meet with any agents.

Applying for Assistance

What you will need for grants or loans
- Itemized list of losses
- Estimates of the repair or replacement cost of each item
- Estimates of new flood insurance premiums
- Federal income tax returns from last three years (copies)
- Deed, mortgage, or renter’s lease (copy)
- Previous insurance policy or insurance settlement (copy)

What you will need for personal loss
- Proof of monthly income (stubs, statements)
- Driver’s license and/or Social Security Number

What you will need for business/farm loss
- A brief history of the business or farm
- Personal and business financial statements
- Loan repayment schedule
- List of bills owed
- Farm Service Agency information on farm crop base and assigned yields

Source for This Publication
- FEMA Disaster Assistance Application: https://www.fema.gov/apply-assistance

Note: This publication is designed to provide accurate, current, and authoritative information on the subject. However, since the laws, regulations, administrative rulings, and court decisions on which it is based are subject to constant revision, portions of this publication could become outdated at any time. This publication is distributed with the understanding that the authors are not engaged in rendering legal advice or opinions, and the information contained herein should not be regarded, or relied upon, as a substitute for legal advice or opinion. For these reasons, the utilization of these materials by any person constitutes an agreement to hold harmless the authors, the Institute of Food and Agricultural Sciences, and the University of Florida for any liability claims, damages, or expenses that may be incurred by any person as a result of reference to or reliance on the information contained in this fact sheet.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.
Introduction
This article deals with information on how to replace lost or damaged papers.

Birth Certificates
Florida Birth Certificates
1. The process for applying for a birth certificate can be found at the Florida Department of Health (DOH) website. Access online at http://www.doh.state.fl.us/planning_eval/vital_statistics/birth_death.htm

2. To order a birth certificate by mail, complete the Application for Florida Birth Record which can be found at the DOH website. Access online at http://www.floridahealth.gov/certificates/certificates/birth/Documents/DH726-BirthApplication-12-2010-enterable.pdf

3. Florida birth certificates can only be issued to the registrant (if at least 18 years of age), the registrant's parents listed on the birth record, the registrant's legal guardian (must provide guardianship papers), the legal representative of the registrant or the registrant's parents/legal guardian, or other persons by court order (must provide recorded or certified copy of court order).

4. All applications must be accompanied by a copy of a valid photo identification and a non-refundable processing fee. Checks and money orders should be made payable to the “Vital Statistics.” For current fees, telephone the Florida Bureau of Vital Statistics in Jacksonville at 1-904-359-6900 (this is not a toll-free number), or visit the DOH website. Access online at http://www.doh.state.fl.us/planning_eval/vital_statistics/birth_death.htm

5. Send the information and non-refundable processing fee to the following address: Bureau of Vital Statistics, ATTN: Vital Records Section, Post Office Box 210, Jacksonville, FL 32231-0042

Out-of-State Birth Certificates
1. If the birth did not occur in Florida, contact the vital statistics office in the state where the birth occurred. A list of state offices is at the National Center for Health Statistics website. Access online at http://www.cdc.gov/nchs/howto/w2w/w2welcom.htm
Replacing Lost or Damaged Documents

2. For birth records of those born abroad, you must request a Replacement Form FS-240 from the Department of State in Washington, D.C. This information can be found at the CRBA website. Access online at http://travel.state.gov/content/passports/en/about/events-and-records/birth.html

3. All requests must be accompanied by the requester’s valid identification and a non-refundable processing fee. Checks or money orders must be made payable to “Department of State.” For current fee, visit the CRBA website. Access online at http://travel.state.gov/passport/get/first/first_825.html http://travel.state.gov/content/passports/en/about/events-and-records/birth/replace-or-amend-consular-report-of-birth-abroad.html

4. Send the information and non-refundable processing fee to the following address: Department of State, Passport Vital Records Section, 44132 Mercure Circle, PO Box 1213, Sterling, VA 20166-1213

Citizenship / Naturalization Papers

You can obtain information about Form N-565, the form necessary to request citizenship and naturalization papers, by contacting your regional United States Citizenship and Immigration Services (USCIS) office, or by visiting the USCIS website. Access online at http://www.uscis.gov/files/form/n-565.pdf

Form N-565 must be accompanied by a non-refundable fee and filed in person at a USCIS office in the United States or at a USCIS office abroad. If Form N-565 is filed abroad, it must be signed in front of a USCIS or consular official.

General information about citizenship and naturalization papers can be found at the USCIS website. Access online at http://www.uscis.gov/portal/site/uscis

Death Certificates

Florida Death Certificates

1. The process for applying for a death certificate can be found at the Florida Department of Health (DOH) website. Access online at http://www.doh.state.fl.us/planning_eval/vital_statistics/deaths.htm

2. To order a death certificate by mail, complete the Application for Florida Death Certificate form which can be found at the DOH website. Access online at http://www.floridahealth.gov/certificates/certificates/death/_documents/DH727-Application-Death-FetalDeath-final2-enterable.pdf

3. All signed letters of request and applications must meet the eligibility requirement. There are two eligibility rules in Florida. The first rule is that anyone may order a Florida Death Certificate “without cause of death” of the decedent. The second rule is that a Florida Death Certificate “with cause of death” is confidential by Florida law and may only be issued to the decedent’s spouse, parent, child, grandchild, or sibling (if 18 years of age or older); or to any person who provides a “Will” that has been executed pursuant to Florida Statute 732.502, or an insurance policy, or other document that demonstrates the applicant’s interest in the estate of the decedent; or to any person who provides documentation that he or she is acting on behalf of an eligible person; or to any person fifty years following the date of death that “cause of death” becomes public information.

4. All letters of request and applications must be accompanied by a copy of a valid photo identification of the applicant and a non-refundable processing fee. Checks and money orders should be made payable to “Vital Statistics.” For current fees, telephone the Bureau of Vital Statistics in Jacksonville at 1-904-359-6900 (this is not a toll-free number), or visit the DOH website. Access online at http://www.doh.state.fl.us/planning_eval/vital_statistics/deaths.htm

5. Send the information and non-refundable processing fee to the following address: Bureau of Vital Statistics, ATTN: Vital Records Section, Post Office Box 210, Jacksonville, FL 32231-0042

Out-of-State Death Certificates

1. If the death did not occur in Florida, contact the vital statistics office in the state where the death occurred. A list of state offices is at the National Center for Health Statistics website. Access online at http://www.cdc.gov/nchs/howto/w2w/w2welcom.htm

2. For consular death records of US citizens who died abroad, you must submit a notarized request to the Department of State in Washington, D.C. The information required in the letter and additional information about requesting a Certified Copy of a Report of Death of an American Citizen Abroad can be found at the CRBA website. Access online at http://travel.state.gov/content/passports/en/about/events-and-records/death/CRDA-copy.html
3. All requests must be notarized, accompanied by the requester's valid identification, and a non-refundable processing fee. Checks or money orders must be made payable to “Department of State.” For current fee, visit the CRBA website. Access online at http://travel.state.gov/content/passports/en/abroad/events-and-records/death/CRDA-copy.html

4. Send the information and non-refundable processing fee to the following address: Department of State, Passport Vital Records Section, 44132 Mercure Circle, PO Box 1213, Sterling, VA, 20166-1213

Driver’s Licenses
In Florida, you must go to your local driver license office and apply for a duplicate driver’s license. For a list of offices, telephone 1-850-617-2000 (this is not a toll-free number), or visit the Florida Department of Highway Safety and Motor Vehicles website. Access online at http://www.flhsmv.gov/locations/

You must present original documents that indicate your identity, social security number, residential address, and proof of citizenship or legal presence. There is a fee for duplicate licenses.

Income Tax Returns
To request a copy of your federal tax return, contact the IRS and ask for IRS Form 4506. Request one for each year’s return you are requesting. You can find this form at the IRS website. Access online at http://www.irs.gov/pub/irs-pdf/f4506.pdf

To request federal tax forms for delivery via United States Postal Service, telephone, toll-free, 1-800-TAX-FORM (1-800-829-3676).

Insurance Policies
To replace lost or destroyed insurance policies, contact the agent or company providing the coverage. You may be required to complete a form, pay a fee for duplicate copies, or both. Providing the policy number will expedite this request.

Marriage Certificates
Florida Marriage Certificates
1. The process for applying for marriage certificates can be found at the Florida Department of Health (DOH) website. Access online at http://www.doh.state.fl.us/planning_eval/vital_statistics/marriage.htm

2. To order a marriage certificate by mail, complete the Application for a Marriage Record for Licenses Issued in Florida. Copies of the form can found at the DOH website. Access online at http://www.floridahealth.gov/certificates/certificates/marriage/_documents/DH261-Application-Marriage-Record-final2-enterable.pdf

3. All applications must be accompanied by a non-refundable processing fee. Checks and money orders should be made payable to the “Bureau of Vital Statistics.” For current fees, telephone the Florida Bureau of Vital Statistics in Jacksonville at 1-904-359-6900 (this is not a toll-free number), or visit the DOH website. Access online at http://www.doh.state.fl.us/planning_eval/vital_statistics/marriage.htm

4. Send the application and non-refundable processing fee to the following address: Bureau of Vital Statistics, ATTN: Vital Records Section, Post Office Box 210, Jacksonville, FL 32231-0042

Out-of-State Marriage Certificates
Contact the vital statistics office in the state where the marriage occurred. For a list of offices, visit the National Center for Health Statistics website. Access online at http://www.cdc.gov/nchs/howto/w2w/w2welcom.htm

Military Discharge Papers
To obtain copies of military discharge papers, request Form 180 from any Veterans Administration Office, the American Legion, Veterans of Foreign Wars, Red Cross, Veterans Association, or military recruiter office. Form 180 is also available at the NARA website. Access online at http://www.archives.gov/research/order/standard-form-180.pdf

Send the completed form to the following address: National Personnel Records Center, 1 Archives Drive, St. Louis, MO 63138

If a veteran has filed for education or disability benefits, the Veterans Administration can furnish a copy of military discharge papers or a statement of service.

If discharge papers were recorded in the county clerk’s office at the time of discharge, they can be replaced by contacting that office (Registrar of Deed) in the county where they were recorded.
Passports

Passports Lost in the United States
If your passport is lost or stolen in the United States, report the loss or theft immediately to the Department of State or to the nearest Passport Agency. The loss or theft should also be reported to local police.

Passports Lost Abroad
If your passport is lost or stolen while you are abroad, it should be reported immediately to the nearest United States embassy or consular office.

A passport is a traveler’s principal means of identification abroad, and its loss is very serious. Whether lost or stolen in the United States or abroad, you can request a replacement passport by mail at the following address: Department of State, Passport Correspondence Branch, 1111 Nineteenth Street NW, Suite 510, Washington, DC 20522-1705.

Property Deeds
You may be concerned if the deed to your home or other property is destroyed or lost in a disaster. The deed you receive is really just a certification to you that your transaction has been established as public record; the true declaration of your ownership is held at the county courthouse. You can obtain a certified copy of your deed at your county courthouse (there is a fee). Because you are requesting a public record, you will not need any identification, but you will need to know the property holder’s name. For more information, visit the Florida website. Access online at https://www.myfloridacounty.com/official_records/index.html

If the deed is held by a bank or mortgage company, check to be sure that it is being held safely. If damage has occurred, work with the lending/mortgage organization to find out how the deed can be replaced.

Savings Bonds/Notes
To get your bond replaced, complete FS Form 1048 from the United States Treasury Department, Bureau of Public Debt. To receive this form, either telephone, toll-free, 1-844-284-2676, or visit the US Treasury website. Access online at http://www.treasurydirect.gov/forms/sav1048.pdf

On FS Form 1048, provide the approximate issue date, along with the complete names, addresses, and social security numbers that appeared on the bond, and the bond serial number. If you do not know the serial number or denomination, just write “unknown” in the space provided. If the bond owner is a minor, the form should be signed by both parents and should include the minor’s age and social security number (the duplicate bond will show the original issue date). Mail the completed form to the following addresses depending on type of bond: (HH or H savings bonds) Treasury Retail Securities Site, PO Box 2186, Minneapolis, MN 55480-2186 or (E, EE, or I savings bonds) Treasury Retail Securities Site, PO Box 214, Minneapolis, MN 55480-0214.

Social Security Cards
For information about social security, visit your nearest Social Security Administration (SSA) office or go online (ssa.gov). To find your nearest office, telephone, toll-free, 1-800-772-1213, or visit the SSA website. Access online at https://secure.ssa.gov/apps6z/FOLO/fo001.jsp

To file an application for a duplicate card, you will need documents demonstrating your identity and US citizenship. You will also need a valid photo identification.

Vehicle Titles
In Florida, to replace a lost vehicle title, contact the Florida Department of Highway Safety and Motor Vehicles (FL-HSMV) and request an Application for Duplicate or Lost in Transit/Reassignment for Motor Vehicle, Mobile Home, or Vessel Title Certificate. To request this form, telephone 1-850-617-2000 (this is not a toll-free number), or visit the FLHSMV website. Access online at http://www.flhsmv.gov/forms/duptitle.html

For information on fees, telephone 1-850-617-2000 (this is not a toll-free number), or visit the FLHSMV website. Access online at http://www.flhsmv.gov/DHSMVfees.htm

Wills
If your will is misplaced or destroyed, contact the attorney who prepared it. If your circumstances have changed, a new Will may be appropriate.

Source for This Publication
Avoiding Fraud and Deception

Michael T. Olexa and Lauren Grant

Introduction

Victims must be cautious about employing strangers to remove trees and do repair work on their property. Every agreement and credit contract should be read carefully and evaluated before it is signed. Shoddy workmanship and price gouging are common in crises.

Make sure the contractor holds a proper license by contacting the Florida Department of Business and Professional Regulation (FDBPR) in Tallahassee at 1-850-487-1395 (this is not a toll-free number), or visit the FDBPR website. Access online at http://www.myfloridalicense.com/dbpr/

If you do not live in Florida, check online or in the phonebook for your state’s department of business and professional regulation. Beware of door-to-door salesmen and sound-alike names. Sometimes undependable workers enter a damaged area, make cheap repairs, and then leave before the residents discover that the repairs are inadequate. If your local contractor cannot do the work, ask him or her to recommend someone.

Make sure the contractor is insured and bonded. Uninsured workers may have the right to sue you if they are injured on your property.

Never let anyone begin working on your home or business without first establishing a written contract. Do not let anyone rush you into a deal.

Only donate or request disaster assistance through a reputable accountant, financial counselor/planner, bank, credit union, or non-profit organization. Do not give information out over the telephone.

Tree Removal

When the storm is over, workers may appear with chainsaws eager to make a “fast buck” removing trees and other damaged property.

Tree removal requires great skill; the best bet is to contact local tree services. Improperly felled trees can damage your home or neighbors’ homes. Also, the tree cutter may be injured. Professional tree services are licensed, insured, and experienced; they carry liability insurance protecting the
homeowner from a lawsuit in case of an accident. Make sure that any company you employ meets these criteria. Ask to see the company’s license and evidence of liability insurance.

Ask for a cost estimate and schedule for completion of the work. Be sure the trees will be removed from your property after they are cut. Try to get estimates from more than one tree service provider. All details of the agreement should be in a contract and signed by both a representative of the tree service and the homeowner. If there is considerable local damage, tree service providers from throughout the region may come to help clear.

If you decide to employ an independent tree cutter in spite of the risks involved, draw up a written contract that clearly spells out the work to be done (e.g., number of trees to be cut, stump height or treatment, what is to be done with the cut trees and by whom, beginning and completion date of work, and amount to be paid and when). NEVER pay for work before it is done. Include a statement about who is responsible for expenses in case of an accident. This should include what happens if the worker accidentally damages your property and who pays if the worker is accidentally injured. This statement is no assurance of protection, but it may help.

Home Repairs

If your home is damaged during a disaster, you should immediately contact your insurance company. The insurance company may require that specific procedures be followed to collect for repairs.

There are certain precautions to follow if you are responsible for arranging for the repairs. Take time to investigate the work quality and reliability of the home repair contractor or the worker you are considering hiring. Shoddy work will only increase your loss and frustration. Ask to see any applicable licenses. Before work begins, always get any agreement in writing and signed by both parties. Verbal agreements can be misunderstood and usually are unenforceable.

Contracts for home improvement projects should include the following information:

- A description of the work to be done (always require this to be detailed, describing the repairs to be made and the materials and grades to be used)
- All financing information required by state and federal laws
- Any warranty agreements
- Name and address of contractor and person for whom work is to be done

Never sign a completion certificate until all work is satisfactorily done. Also, never pay a home repair contractor or a worker for work before it is done. If considerable work is to be done, you may divide the cost for the work into two payments (i.e., you pay half of the payment upfront and the other half when the job is completed).

Landlords and Tenants

You have special rights and responsibilities if you are renting a residence that is damaged. Repairs are the responsibility of the landlord. You should immediately notify the landlord of any damage to the property and make reasonable efforts to help protect the property from any additional damage. The landlord is responsible for having the residence repaired and returned to livable condition. If repairs are not made within a reasonable time, the tenant has the right to reduced rent, or perhaps to terminate the lease and move.

Source for This Publication

- Beware of Fraud After Disasters. University of Illinois Extension. Access online at http://web.extension.illinois.edu/disaster/PDF/fraud2.pdf
As a Florida resident, my family had first-hand experience with hurricane recovery. But while joining the world in watching the plight of the people of Mississippi, Louisiana, and Alabama after Hurricane Katrina, I realized how fortunate we had been. When disaster strikes, regardless of the magnitude, trying to pick up the pieces and getting your family’s life back in order can be overwhelming.

The IRS offers disaster victims a Disaster Losses Kit to help claim unreimbursed losses on property destroyed by a natural disaster. Forms provided in the kit can help you sort through what was lost or destroyed and help prepare you for insurance claims as well as federal funding that is made available to victims of federally declared disaster areas. The IRS understands that tax records may have been lost or destroyed and can provide copies or transcripts of previously filed tax returns free of charge. The required form, in addition to many other helpful guides and forms, is included in the Disaster Kit.

Special tax law provisions were also granted for additional relief to disaster victims, including additional time to file returns and pay taxes. Both individuals and businesses in a declared disaster area can also get a faster refund by claiming losses related to the disaster on the tax return for the previous year, usually by filing an amended return. For more information, go to http://www.irs.gov.

Listening, learning, and living together: it’s the science of life. “Family Album” is a co-production of University of Florida IFAS Extension, the Department of Family, Youth and Community Sciences and of WUFT-FM. If you’d like to learn more, please visit our website at familyalbumradio.org

1. This document is FAR9043, one of a series of the Family Youth and Community Sciences Department, UF/IFAS Extension. Broadcast as program 271 and published March 2009. Reviewed January 2015. In the interest of time and/or clarity, the broadcast version of this script may have been modified. Visit the EDIS website at http://edis.ifas.ufl.edu.

2. Donna Davis, senior producer, Family Album Radio, Department of Family, Youth and Community Sciences, UF/IFAS Extension, Gainesville, FL 32611.
Community Sciences, and of WUFT-FM. If you’d like to learn more, please visit our website at http://www.familyalbumradio.org.

To listen to the radio broadcast:

http://www.radiosource.net/radio_stories/271.mp3

http://www.radiosource.net/radio_stories/271.wav

Reference
Preparing for and Recovering from Hurricane and Tropical Storm Damage to Tropical Fruit Groves in Florida

Jonathan H. Crane and Carlos F. Balerdi

Background

Southern Florida has experienced numerous hurricanes and tropical storms. The most recent, hurricane Katrina (25–26 August 2005), made landfall in south Florida and was rated as a category 1 hurricane by the National Weather Service. Other recent hurricanes in 2004 (Charley, Frances, Jeanne, and Ivan) also affected commercial tropical fruit operations along the southeast and southwestern areas of Florida. In 1992, southeast Florida was devastated by Hurricane Andrew, a category 5 hurricane.

The Saffir-Simpson Hurricane Scale is a 1 to 5 rating based on the wind intensity of the hurricane and is useful in estimating the potential damage expected from a hurricane landfall. The scale is as follows: Category 1 hurricane, winds 74–95 mph (119–153 km/hr); Category 2 hurricane, winds 96–110 mph (154–177 km/hr); Category 3 hurricane, winds 111–130 mph (178–209 km/hr); Category 4 hurricane, winds 131–155 mph (210–249 km/hr); and Category 5 hurricane, winds greater than 155 mph (249 km/hr).

The estimated destruction to tropical fruit crops caused by recent hurricanes and tropical storms (1992, 1994, 2004, 2005) was in the hundreds of millions of dollars. As with the aftermath of previous hurricanes, growers are currently assessing their options, such as replanting, rehabilitating damaged trees, and repairing equipment and irrigation systems. They are also assessing their economic situation.

Winds from hurricanes may cause almost complete defoliation of all fruit crops, moderate to severe limb damage, severe trunk twisting and breakage, tree toppling, uprooting of entire trees, and the loss of almost all fruit (Campbell et al., 1993; Crane et al., 1993). Flooding during and after hurricanes may lead to root rot caused by low soil oxygen conditions and/or fungal diseases, and increased insect infestations (especially stem and trunk boring beetles). In addition to the direct effects of strong winds, wind-blown debris, such as loose sand and rock from adjacent open fields, may strip bark off of trees (sandblasting).

Grove infrastructure such as irrigation systems, tractors, roads, and farm buildings that house equipment and supplies, may also be heavily damaged by hurricanes and tropical storms.

Pre-Hurricane Practices

There are a number of planning practices that will help to minimize damage and speed recovery after a tropical storm or hurricane. These include planning for post-storm equipment needs; ranking groves as to their importance and repair potential; assessing the grove site and adjacent
areas; and taking into account the previous preplant soil preparation practices and plant propagation methods used, the presence of windbreaks, and the current or needed tree size control practices.

Planning

Proper planning prior to a hurricane enables growers to make sound decisions before and after a storm and increases the chances of rapid recovery after the storm. Florida’s hurricane season is from June to November each year. However, preparations for a hurricane should be made well before a tropical storm or hurricane watch or warning is announced. This is because cultural practices, such as pruning, topping, and hedging prior to a hurricane take time, labor, and equipment - all in short supply just before a hurricane.

Components of a hurricane plan should include insurance coverage for equipment, buildings, and orchards (including crop and tree loss); accumulation and safe storage of equipment needed for the recovery, such as saws, slings, shovels, fuel, paint, and equipment parts; and the knowledge of the location and cost of backhoes, front-end loaders, and wood chippers. Prioritizing which groves will be worth resetting, clearing, and replanting with the same or a different crop, or top-working is equally important.

Site Selection

Choice of a planting site is an important consideration that can affect the amount of hurricane damage. Natural woodlands can significantly reduce the velocity of winds during storms. They also reduce bark damage to fruit trees caused by wind-blown sand and gravel from open fields. Sites with planted windbreaks also afford some wind protection as long as the windbreak trees are well-rooted and have been topped, thus reducing the chances of their toppling into the adjacent fruit trees.

Preplant Soil Preparation

In Miami-Dade County, most tropical fruit crops are grown on a hard, but porous, oolitic limestone solid, commonly called Rockland or Krome soil (Calhoun et al., 1974; South Dade Soil and Water Conservation District, 1989; Noble et al., 1997). Typically heavy tractors with 42-inch (107 cm) wide front-end plows (“rock plows”) are used to scarify the limestone rock to a 4- to 8-inch (10- to 20-cm) depth. After rock-plowing, front-end trenching plows are used to make trenches [16 to 18 inches wide and 18 to 24 inches deep (41 cm to 46 cm wide and 46 to 61 cm deep)] in rows corresponding to tree rows and tree spacing distances (Colburn and Goldweber, 1961). Trees then are planted at the intersections of the crossed trenches, which greatly increases the depth and volume of soil available for rooting and anchoring trees.

Past hurricanes in southern Florida showed that preplant practices that increased the soil depth available for rooting increased tree stability during high winds. “Flat-planted” trees in rockland soil generally toppled during tropical storms and hurricanes, revealing a shallow but extensive lateral root system (Colburn and Goldweber, 1961). Observations after Hurricane Andrew suggested that some trees grown in cross-trenched groves broke off along the trunk, leaving only a jagged stump. Thus, while the tree was well anchored, the trunk could not withstand the wind stress. Hence, there may be some argument for flat-planted trees that can be reset after toppling. However, in many cases, flat-planted trees were uprooted completely or blown away.

Tropical fruit trees planted in the shallow sands along the southeast and southwest coasts of Florida also have a restricted root zone due to high water tables (ground water levels). This also limits root anchoring and increases the likelihood of tree toppling. Construction of large, high beds may increase the extensiveness of the root system and improve tree anchorage during high winds.

Grafted vs. Air-Layered Trees

A number of fruit crops, such as lychee, longan, guava, and ‘Tahiti’ lime (no longer commercially produced in Florida to any extent) are commonly propagated by air layering (marcottage) for commercial planting in southern Florida. However, hurricanes during the 1940s and 1960s and Hurricane Andrew in 1992 revealed the grafted lime trees withstood the high winds, while air-layered trees were toppled or blown out of the ground. A survey of mature lime groves after Hurricane Andrew indicated that only 17% of the trees in groves established with air-layered trees survived while 93 to 96% of the trees survived in groves established with grafted trees (Crane et al., 1994). Guava groves established with air-layered trees and allowed to grow to approximately 12 to 15 ft tall toppled, whereas those pruned to 7 to 8 ft remained in place. Thus, there is an effect of tree species, propagation method, and tree size on high wind tolerance.

Tree Size Control Practices

The canopies of trees, especially mature trees, resist wind movement, although there is much difference among species. If the wind is of sufficient speed and duration, trees may have leaves blown off, limbs broken, trunks snapped...
and/or twisted off (at or near the soil surface), or be toppled or blown out of the ground.

The most beneficial pre-hurricane cultural practice to reduce tree damage and toppling is a regular pruning program to control tree size. Tree size may be reduced by topping and hedging with heavy equipment (Newman, 1971; Phillips, 1972) and/or with hand-operated saws and pneumatic shears for selective limb removal. Other benefits of tree size control include ease of harvest, increased penetration and efficiency of foliar sprays, increased light and air penetration, retention of a lower bearing canopy, and improved equipment movement through the orchard.

A post-Hurricane-Andrew survey indicated that the percentage of trees toppling over and surviving varied with fruit species, the age of the trees, and the height prior to the storm (Crane et al., 1994). In general, in groves where tree height was limited to 12 to 22 ft (3.7 to 6.7 m), more trees remained upright than in groves where no tree height control was practiced. In an avocado orchard rejuvenation study (Crane et al., 1992), the fewest toppled trees after Hurricane Andrew were in treatments where trees were topped to 12 ft (3.7 m). In contrast, more non-topped trees (30 to 60 ft; 9 to 18 m) and trees topped to 16 to 22 ft (4.9 to 6.7 m), had fallen.

Windbreaks

The benefit of windbreaks depends on whether they withstand high winds, remain upright and mostly intact during a storm, or topple, uproot, and destroy the trees they were intended to protect.

In southern Florida, traditional flat-planted windbreaks of Australian pines resulted in heavy damage to fruit trees after a hurricane when they fell into the orchards (Brooks 1946; Loomis, 1946). In addition, they increased the grove restoration cost because windbreak trees had to be removed. Observations from previous hurricanes showed that no common windbreak species withstood hurricane winds in excess of 100 mph (161 kph) without serious damage or uprooting (Ruehle, 1963). Similar problems with planted windbreaks were observed after Hurricane Andrew. However, an exception was mature, well established sapodilla trees, which appeared to be quite stable even against strong winds. It is recommended they be topped to 22 ft (6.7 m) or less to reduce their chances of toppling.

Human-constructed windbreaks have become common for carambola production in southern Florida. These windbreaks may be up to 22 ft (6.7 m) high and may surround an entire planting or just the portion of the grove perimeter not protected by natural windbreaks. Typically, they consist of aluminum or wooden poles with horizontal support cables from which shade cloth is attached vertically or on an incline to the cables. In most instances, groves are also sectioned-off inside the orchard with vertical shade cloth suspended 12 to 20 ft (3.6 to 6.1 m) above the orchard. These windbreaks work well to reduce wind speeds (5 to 36 mph; 2 to 16 ms-1 or more) commonly experienced from November to March (Crane and Schaffer, 1992), thus allowing trees to grow vigorously and produce fruit (Crane, 1992). However, constructed artificial windbreaks were damaged during recent category 1 storms and did not survive the category 3 winds of Hurricane Wilma and the category 5 winds of Hurricane Andrew. On the other hand, groves adjacent to woodlands and planted windbreaks that had been topped had fewer toppled fruit trees and much less damage from windborne loose rock and sand than trees in unprotected groves.

Irrigation Infrastructure

Removing risers from the overhead and under-tree irrigation systems before a tropical storm or hurricane will dramatically reduce the amount of damage to risers and the underground piping of the system. During riser removal, plugging the riser bottom and open ground pipe with tape will greatly reduce debris entry and subsequent plugging of the irrigation system. Placing pumps and engines in an enclosed building also will reduce the chances of damaging them. However, moving such heavy equipment may not be practical.

Post-Hurricane Practices

The first step after a tropical storm or hurricane is to visually assess the damage and to estimated the cost and materials needed for resetting the grove. Once the equipment and labor have been assembled, debris removal, pruning of damaged trees, and resetting of toppled trees can begin.

Repairing or arranging for some type of functioning irrigation system should be one of the top priorities after the storm. This is because downed trees as well as trees uprighted after the storm will need access to water immediately to promote new root growth.

Trees should be reset as soon as possible after a hurricane. The timing, however, may depend on many factors, including the cost and availability of equipment and labor, and which groves or trees are deemed most valuable and/or saveable. The amount of root damage, the percentage of...
the root system remaining in the ground, and the amount of soil left around the exposed roots should be used to determine which trees to reset first. If possible, mounding soil on exposed roots or providing some type of shade will help keep the roots alive until resetting is possible.

Equipment

The equipment needed for resetting trees after a hurricane includes hand-pruning saws, chain saws, combination front-end loaders and backhoes, picks, shredders or chippers, shovels, hand hoes, loppers, and slings or large-diameter ropes for resetting fallen trees. Slings should not be made of cable or chain because they may damage the bark and cambial layer and may girdle already damaged and stressed trees. Cables also can be extremely dangerous to workers if they snap.

Protecting Sun-Exposed Trunks and Limbs

Cambial damage (“sunburn”) may occur to defoliated and/or toppled trees exposed to direct sunlight for prolonged periods (Boyce, 1961; Levitt, 1980; Tattar, 1978). This injury is thought to be caused by overheating of the cambium layer, and symptoms include drying and peeling of the bark, defoliation, branch dieback, wood injury, and growth of saprophytic fungi on dead bark and wood.

Spraying or painting tree trunks and branches with white, water-based latex paint immediately after a hurricane will help prevent cambial overheating due to sun exposure. The latex can be diluted with water in a 1:1 ration (whitewash). If latex is not available, a whitewash can be made by mixing 1 part water, 1 part fine-grade hydrated lime, and 1/10 part zinc sulfate (1:1:01 ratio). For example, 1 gallon of water, 1 lb of hydrated lime and 1/10 lb of zinc sulfate (3.785 liters of water, 454 g of hydrated lime and 45 g of zinc sulfate). The zinc sulfate should be dissolved in water first. For application purposes, the mixture can be diluted to the desired consistency with water. If the material is to be applied with a mechanical sprayer, it will have to be strained first and diluted further.

Piling brush on the exposed surfaces of major limbs and the trunk area will also aid in preventing sunburn damage.

Pruning

Pruning may be a part of the debris removal and preparation for resetting toppled trees. Pruning cuts should be made back to sound wood, as in normal selective pruning practices. This includes pruning back to lateral buds, to the nearest crotch, or to the trunk. Additional pruning will be essential for proper tree management as new growth continues to develop and trees recover. In some cases, this may be a good time to cut trees back for topworking to more desirable cultivars.

Toppled trees also should be pruned back to sound wood. However, because of the extensive root damage of partially uprooted trees, a moderate to large amount of the tree canopy may have to be removed. Removing part or most of the canopy reduces the weight of the tree, making resetting and stabilizing the tree easier. It will also reduce the transpirational surface area. Depending on the size of the tree and the amount of damage, it may have to be cut back to main scaffold limbs or to the trunk (stump). Some trees may shift back to their original positions as the tops are removed. This can be dangerous for anyone pruning the tree or working near the root mass or trunk.

During the pruning process, braces for propping up trees may be made by cutting 4- to 10-ft (1.2- to 3.1-m) long limbs of 4- to 6-inches (10- to 15-cm) diameter with forked branches. These braces can be used to help stabilize trees after the resetting process.

Pruned-off branches can be stacked in the row for natural decomposition, removed from the orchard, chipped or shredded at the grove, or burned. Burning is not recommended because of air pollution, whereas chipped wood can be used immediately as mulch or composted for later use. Non-plant debris, such as metals, plastics, and rubber, should be removed and stacked outside the grove for later removal.

In some instances, when it is impossible to reset the trees immediately, pruning to remove most of the canopy of toppled trees will reduce transpiration and prevent desiccation. In addition, the pruned-off branches can be draped over the remaining trunk and scaffold branches for protection against sunburning. However, keep in mind that this practice may provide protection for wood-boring insects from their natural enemies (S. Goldweber, personal communication) and the pruned branches may act as a bridge for weedy vines.

Once plant and non-plant debris have been removed and the orchard or some part of the orchard has been cleared, redigging planting holes and resetting fallen trees can begin.

The Resetting Operation

Before resetting a tree, lateral and vertical roots completely out of the ground and damaged roots should be removed with a lopper and/or a saw. This will enable the tree to stand...
level when reset. A backhoe or similar machine should be used to remove enough soil from the tree hole so that the tree will stand at or near the same level as before. Soil underneath the root mass of the fallen trees also may be removed by hoes and shovels.

Heavy-duty slings or ropes attached to tractors or backhoes can be used to assist in raising the trees to an upright position. Pre-cut braces can be used to stabilize or prop the trees after they are raised. The hole should be filled with excavated soil and the soil “flooded-in.” The use of wood chips or other mulch on top of the soil is helpful in conserving moisture and controlling weeds.

Irrigation Practices

Invariably, irrigation systems are damaged to some extent during tropical storms or hurricanes. Irrigation systems should be repaired as soon as possible, because drought stress may cause dieback of new shoots and leaves, and may result in tree death. In addition, high-volume sprinkler irrigation systems need to be working for cold protection of cold-sensitive trees. We recommend irrigating at least twice per week at a 0.5- to 1.0-inch (1.3- to 2.5-cm) rate per irrigation until trees become reestablished.

Salt damage to trees depends on plant tolerance, the salt concentration of the water and the duration of exposure in addition to whether the roots are immersed (salt water intrusion or tidal surge) and whether salt is deposited by wind (foliar). If irrigation is available after a storm, irrigation to wash salt off remaining foliage and to leach salts in the soil beyond the root zone will help reduce salt damage to sensitive trees.

Fertilizer Practices

Obtaining fertilizers and distributing them to reset or reconditioned trees may not be possible and/or may be of secondary importance immediately after a hurricane. However, major fertilizer elements should be applied when new growth begins to prevent nutrient deficiencies after stored reserves in the trees are depleted. Fertilizer rates for trees with limb loss should be reduced in proportion to the amount of tree damage, keeping in mind that previously fallen trees will have a damaged and much-reduced fibrous root system. More frequent light applications of low-analysis fertilizers may ensure a steady supply of nutrients and aid in a rapid recovery of canopy, limbs, and roots. In contrast, trees that lost mainly only leaves and remained upright should receive slightly higher-than-normal rates of fertilizer per tree as they reestablish their canopy. If possible, the fertilizer should be placed within a 3- to 6-foot (0.9- to 1.8-m) area of the trunk. This is because the fibrous root systems of fallen trees probably have been reduced and damaged.

Micronutrients such as Mn and Zn commonly are applied to foliage in south Florida, especially in Miami-Dade County because the limestone-based soil has a pH of 7.5 to 8.5. As trees refoliate, micronutrients such as Mn and Zn should be applied to the leaves. Chelated iron soil drenches should be applied as the trees begin to refoliate.

Weed Control Practices

Weed control may be difficult after a storm because of a lack of equipment, materials, or labor. However, because more of the land surface area is exposed to direct sunlight, weeds and weed vines will proliferate. Weeds and vines will compete with the trees for sunlight, water, and nutrients and become more difficult to control as they mature. When row middles become accessible, mowing and herbicide applications should be resumed.

Mulching Practices

The use of mulch (wood chips) around the trees will be helpful in conserving soil moisture and reducing weed growth. Mulch should not be mounded against the trunks because continuous moisture along the trunk may facilitate attack by fungi and borers. The mulch should be kept at least 8 to 12 inches (20 to 30 cm) from the trunk.

Some fruit tree species (e.g., lychee, mango, avocado) may be injured by thick layers of mulch and/or certain mulch materials. If in doubt, only weathered materials that are coarsely textured should be used and applied in thin layers of no more than 2 to 4 inches (5 to 10 cm). Slightly increased fertilizer rates, especially of N, may be necessary because some of the fertilizer will be used by microorganisms decomposing the mulch into compost (Brady, 1974).

Insect and Disease Control Practices

Depending on location, various primary and secondary pathogens may attack defoliated and weakened trees. In addition, insect pests may attack what are usually considered non-host species. This may be due to a lack of normal host plant material or to decreased resistance of stressed plants. Local extension personnel should be contacted for identification and control recommendations.
Post-Hurricane Andrew Observations

The following observations on tree recovery after Hurricane Andrew (1992) may be useful examples of post hurricane care for specific species.

Atemoya and sugar apple. Most atemoya and sugar apple trees began to grow vigorously post storm; however, subsequently regrowth had chlorotic leaves and trees began to decline (Crane et al., 2001). Over the next 18 to 24 months, one or more cycles of new flush and shoot growth occurred followed by dieback. This was especially common for trees that had toppled during the storm and had been reset. The root system of atemoya and sugar apple trees appeared to be damaged by the resetting process; however, even those left leaning (not reset) showed marked iron deficiency and declined slowly. Subsequently, most atemoya and sugar apple trees were removed within 2 years of the storm.

Avocado. Trees reset or left standing after Hurricane Andrew recovered canopy and production rapidly during the next 7 years (Crane et al., 2001). Furthermore, overall industry production was only 20% below that of the season preceding the storm when commercial acreage was 25% higher.

Carambola. The vast majority of mature carambola trees refoliated quickly after the storm and bloomed twice: first, three to four weeks post storm with little fruit set; and again three to four weeks after the first bloom, this time setting a good crop. Post hurricane observations 14 to 15 months later of 4-year-old (young) ‘Arkin’ carambola trees indicated those trees that were declining had detached bark and or major roots at or below the soil line (Crane et al., 1994). Trees that were not heavily damaged appeared to recover well from the storm and little evidence of damage was noted 7 years later (Crane et al., 2001).

Guava. Guava trees began regrowth immediately after the storm, flowered on the new growth, and set a crop within 2 months; fruit was harvested 6 to 7 months later (Crane et al., 2001). Root sprouting from damaged roots was common resulting in multi-trunked trees.

‘Tahiti’ lime. Six to 12 months after Hurricane Andrew, lime trees had refoliated and some production was re-established (Crane et al., 2001). Seven years after the storm an estimated 80% of the surviving lime trees had recovered well. Rootstock sprouting and sunburn damage was somewhat of a problem.

Lychee and longan. Lychee production was greatly reduced for 1 to 2 years after Hurricane Andrew but trees generally recovered well and re-established a normal growth cycle. Six months after the storm, longan trees made a slow to moderate recovery; 10 to 20% were dying back. As with lychee, yields were low for 1 to 2 years and then re-established a normal pattern.

Mamey sapote. Two months and six months after the storm many mamey sapote trees were vigorously flushing (Crane et al., 2001). Some trees grew vegetatively for the next 4 to 5 years before resuming fruit production. Many previously damaged branches and weak new limbs have been observed to break since the hurricane.

Mango. Recovery of many mango trees after Hurricane Andrew was poor. In a post-storm survey four years later, about 20% of the mango trees that had previously toppled and been reset remained stunted and continued to slowly decline (Crane and Balerdi, 1997). Seven years after the storm 25% of the remaining mango trees were still declining (Crane et al., 2001).

Conclusions

Planning for a hurricane will help reduce damage to fruit trees and enhance recovery of the farming operation. The three most important pre-hurricane practices are the use of grafted plant material (for those fruits where this is a viable option), preparation of planting sites to increase rooting depth available for anchoring trees in place, and maintenance of a regular pruning program to limit tree size. After a hurricane, being prepared for clearing debris, repairing the irrigation system, resetting toppled trees, protecting trees from sunburn, and irrigating and fertilizing trees frequently will increase chances that the trees will recover and the farming operation will survive.

Literature Cited and Further Reading

Assessment and Management of Hurricane Damaged Timberland

Alan Long, Rick Williams, Chris Demers, Jarek Nowak, Nicole Strong, Jib Davidson, and John Holzaepfel

Tropical storms and hurricanes have damaged timberland across Florida and other southern states. When hurricane- or tropical storm-force winds rip through forestland, the remaining twisted, broken and damaged timber is no longer the same merchantable product as it was before the storm (see Figure 1). In addition to timber value and infrastructure losses, many forest landowners are also concerned about potential problems, such as bark beetles and wildfire, which may add to their woes in coming months. Every year, southern timberland is damaged by hurricanes, ice storms, or tornadoes somewhere in the region. In response, a variety of information sources have been developed to address the many issues associated with such damage. This fact sheet summarizes information and guidelines from these sources, with a focus on Florida. It provides guidance to forestland owners for assessing severe storm damage, handling salvage operations and timber sales, minimizing potential impacts of other disasters after the storm, dealing with financial issues such as income tax casualty losses, and altering management plans. The references listed at the end may provide landowners with additional information relevant to their particular situation.

Sources for Assistance

You do not have to deal with your losses alone. However, recognize that most of the sources described below are limited in the number of people they can help, and working with your neighbors or doing your own research may provide a good first step until other help is available.

1. This document is SS-FOR 22, one of a series of the School of Forest Resources and Conservation Department, UF/IFAS Extension. Original publication date December 2004. Revised December 2015. Visit the EDIS website at http://edis.ifas.ufl.edu. Funding for the production of this publication is provided by the USDA Forest Service through the Florida Department of Agriculture and Consumer Services Division of Forestry.

2. Alan Long, former associate professor; Rick Williams, former assistant professor; Chris Demers, forest stewardship coordinator, UF/IFAS School of Forest Resources and Conservation; Jarek Nowak, Utilization Specialist, Florida Forest Service; Nicole Strong, Extension specialist, Oregon State University; Jib Davidson, manager, Columbia Timber Company; and John Holzaepfel, forester, Natural Resources Planning Services; UF/IFAS Extension, Gainesville, FL 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office.

U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.
Financial Assistance

Until recently, none of the disaster recovery programs administered by the federal government included forestry or timberland. Timberlands under the Conservation Reserve Program (CRP) may qualify for replanting cost-share assistance according to contract stipulations. Since timber is not an annual crop, landowners that grow trees have not been eligible for federal crop insurance like many agricultural commodities. Nor did past emergency relief funds from the federal government include allocations to help timber owners. However, the emergency disaster relief funding package signed by the president in October 2004 included $25 million for assistance to family forest owners in the Southeast, of which a portion came to Florida to be administered by the Farm Service Agency. The bill also included funding specifically for Florida forest recovery programs, of which some was designated to help landowners with fire mitigation and reforestation. Similar funding programs followed hurricanes after 2004. To prepare for this type of assistance as well as insurance or tax issues, take pictures of the damaged stands in order to document the types of damage and the size, age, and types of trees. Also, compile any records of expenses and treatments in those stands since they were established (to document your basis for taxes), and keep any records of salvage sales that you are able to complete or attempt to make.

Technical Assistance

Forestry consultants, county foresters, timber dealers and brokers, wood processing mills, Landowner Assistance Programs, and UF/IFAS Extension agents may be able to assist you with assessing your damages and determining your next steps. Telephone numbers for timber dealers, brokers, and wood processing mills can be found in the Yellow Pages of your telephone book under “Timber.” County foresters are employees of the Florida Forest Service (FFS) and are listed in the government pages of your telephone book and on the FFS website, http://www.freshfromflorida.com/Divisions-Offices/Florida-Forest-Service/For-Landowners/County-Foresters. County foresters also maintain lists of forestry consultants and logging companies that operate in your area. If you have access to the Internet, use your favorite search engine, such as Google™, to find help. Key words such as “Florida forestry,” “Florida timber buyers,” “Florida foresters,” and other similar terms will help narrow your search. Another source of timber buyers is the Florida Forestry Associations website, http://www.floridaforest.org/. Click on the Master Logger Search Tool. Input your county at the bottom of the page as well as adjacent counties for a complete list of Master Loggers in your area. A private consultant can also help you evaluate your stand conditions and plan sales of the damaged timber. Other private consultants can be found through the Association of Consulting Foresters of America, Inc. website, http://www.acf-foresters.org.

Given the high demand for assistance following major disasters, property size, and, more importantly, timber volume will influence how much help you will be able to receive. It will be very difficult, if not impossible, to have a small volume of timber harvested. If a number of adjacent landowners are willing to work together to arrange for a salvage timber sale, then the combined timber volume may enhance the chances for hiring logging crews and receiving reasonable stumpage prices.

Assessing Damage

Timber

The first critical step for planning salvage harvests or handling tax losses is to determine the extent and type of damage across your property. Using an aerial photo or map of your property, walk all the boundaries and throughout the stands (if you can do so safely) and note on the photo or map the locations of the major pockets and types of damage. Take pictures to show the actual property damage before any cleanup or salvage operations begin. The extent of tree damage and location, and average tree diameter, might influence your salvage decisions. At several locations throughout the damaged parts of your stands it will be important to count and record the numbers (or percentages) of trees that are undamaged or in one of the following categories:

1. Uprooted hardwoods or pines.
2. Broken tops or major stems with less than four main live limbs left on the tree.
3. Broken tops or major stems with four or more main live limbs left on the tree.
4. Severely bent pines.
5. Major wounds, more than 2 inches deep and/or over 1 square foot in size.

For both hardwoods and pines, if trees are reasonably vertical and have at least four main live limbs remaining on the tree (category 3) they will probably survive, although growth will likely be reduced until the crown redevelops. They can be retained for removal in a future thinning or final harvest, but continue to carefully monitor the trees
through the next year for infestations of bark beetles, since the trees have been stressed and wounds are likely present.

Trees that are bent, broken (with three or fewer live limbs), or splintered (categories 2 and 4) probably have internal wood damage such as ring shake and pulled fibers and all or part of the tree may not be suitable for lumber or plywood but could be used for pulpwood, mulch, woody biomass for energy, or particleboard. Ring shake may be less of an issue if the trees have only been subject to winds in one direction; severe winds from alternating directions can lead to twisting and torque stresses. Broken stems, however, inevitably lead to some ring shake and pulled fibers. When merchandizing a section of the tree as solid wood product such as chip-n-saw, sawlog, or plylog, the logger often must start the log several feet past the break to avoid these defects.

Uprooted (category 1) and leaning trees are more likely to have undamaged wood, may dry out more slowly than broken trees, and could still be suitable for lumber if harvested within 2 to 3 months, before blue stain or decay fungi discolor the wood or wood-boring insects create holes in the trees. If major wounds (category 5) are extensive, pine bark beetles could threaten residual pine trees. Also, wood borers and decay may be a problem soon, and the trees should be harvested as soon as possible.

Rocks and Infrastructure
Part of the damage assessment should focus on roads, fences, gates, stream crossings and any other structures on the property. If they are damaged you should note what needs to be done to maintain or repair them. You must have enough access to support 80,000 pound log trucks and the accompanying logging equipment. Again, pictures will prove very helpful for documenting expenditures and repairs.

High Priority Problems
Value of storm-damaged timber decreases with time for a number of reasons: blue stain or decay fungi, wood borers, further losses from bark beetles, large volumes of wood on the market, and higher harvesting costs in damaged stands. Prompt action to assess timber and conduct salvage harvests should focus on the highest value timber (large diameters), which may only be useful for pulpwood, mulch, energy wood or particleboard once stain and decay fungi or wood borers set in. Several factors influence the amount of time that it takes for wood to degrade from a solid wood product to a less valuable product such as pulpwood. Some factors include weather conditions, type of damage, and whether the timber is immediately dead or perhaps still initially alive after the storm event. As a general rule, damaged timber that could be sold for lumber or plywood should be harvested within two or three months.

Potential for Insects, Disease, or Wildfire
The more severely the timber is damaged, the more likely is an attack by insects. Trees with less than three remaining limbs are most likely to be attacked as well as those that are bent, leaning, or scarred. The southern pine beetle (SPB) is the most serious threat to storm-weakened pine timber. This insect is capable of killing even healthy trees under favorable outbreak conditions. If such conditions occur, they will most likely be in late spring or summer the year after the storm. Cool winter temperatures and sufficient rainfall should reduce tree stress until the following spring. Weakened pines emit a scent that is attractive to SPB, and once the beetles settle in, an infestation may engulf large areas of pine timber. An uncontrolled SPB infestation can kill hundreds of acres of pine timber in a relatively short time span. The other pine bark beetles (species of engraver or Ips beetles and the black turpentine beetle) also attack weakened, injured and stressed pines; and under more normal conditions, individual infestations seldom encompass more than 10–15 trees. These beetles usually attack scattered single trees, or two to three trees in a group. However, when stands of pine are suffering high stress, larger, more extensive infestations can occur. Salvaging damaged trees as soon after the storm as possible is the best way to prevent pine bark beetle infestations.

Whether the standing timber is heavily damaged or not, branches, leaves, and broken tops litter the forest floor after a storm and become potential fuel for a wildfire the following spring. Bush-hogging, crushing, roller chopping or prescribed burning will help reduce those fuels.

Decisions to Make
Once you have assessed the damage, you are in a much better position to determine whether you need to consider a salvage harvest or whether the stand has a sufficient number of healthy trees to recover on its own. The North Carolina Division of Forest Resources offered these guidelines in 2002, modified for Florida in this publication:

1. If there is only minor bending or leaning of merchantable-size trees with intact root systems, the trees will naturally recover, and it is probably best to wait and see before exploring salvage options.
2. If trees have only minor damage and the timber is still green and standing, don’t rush to salvage; wait and see if they will naturally recover.

3. If less than 20 percent of the trees in your forest appear to be damaged, don’t harvest the entire tract. If most of the damage is in one area or small pockets, consider small clearcuts of those areas. If, instead, the damaged trees are scattered throughout the stand, leave it for a thinning operation when timber markets improve.

4. If the majority of the timber stand is broken down and salvage is needed, get professional guidance in finding a timber buyer.

5. Have patience during this time and use good business sense. Use the resources available to you to make sure you are getting all that your timber may be worth.

Salvage the Stand

If you determine that a salvage harvest is necessary, you should plan that harvest as soon as possible to best utilize the timber and redeem its value rather than let it go to waste and attract insects. The available salvage period varies according to the expected product, but would not usually exceed 60–90 days. Sometimes, under certain conditions, the salvage period can exceed 90 days. The North Carolina Forest Service’s Evaluation and Management Of Storm Damage to Southern Yellow Pines (http://ncforestservice.gov/managing_your_forest/pdf/EvaluationMngt-Storm-DamageSYellowPines.pdf) suggests that trees in damage categories 1, 2, 4, and 5 (see “Assessing Timber Damage,” above) should be harvested as soon as possible. Harvesting trees with category 3 damage (broken tops, but major stems standing with four or more main live limbs) can be delayed to the next thinning or when timber markets improve.

Timber salvage operations are more time consuming than regular harvesting; therefore, the prices paid for the damaged timber will be lower than prices for standing timber. From a logging point of view, it takes two to three times as long to salvage one load of downed timber as it does to harvest a regular load of logs. As production times increase, so do logging costs, and these increases are especially noticeable if salvage operations are conducted separately for lumber versus pulpwood or woody biomass products. Thus, salvage harvests will be least costly if all products are merchandized at one time. Several other factors also influence salvage results. A broken tree may not be able to be converted to lumber or plywood and may have to be sold as pulpwood regardless of its size; with that in mind, salvage harvests for pulpwood can be delayed for up to six months. However, dead timber often dries out rapidly and has less dollar value when weight scaled. In fact, most mills will not accept timber when the bark is falling off the tree.

What about hardwoods?

Hardwood trees that are standing and have even a small portion of the crown remaining will probably recover in time. Large hardwood trees that are uprooted should be removed, especially those near structures. Hardwood trees with large damaged areas on the trunk or large broken limbs may be infected with decay fungi, which, after several years, will weaken a tree structurally and make the tree more susceptible to future wind damage. Damaged hardwood trees in residential areas that are not removed should be properly pruned to eliminate broken branches and branch stubs and promote rapid healing. Homeowners are reminded to contact their insurance agent concerning the loss of shade trees, pines, or hardwoods, or property damage caused by falling trees.

Tax Considerations

Timber Casualty Loss Deductions

If you have trees that have blown over, had tops severed, trunks split or other damage that stopped growth or resulted in tree death, you may be eligible to file for casualty loss deductions for income tax purposes (Greene 2004, Wang 2008). To be allowed as a casualty deduction, a loss to one’s timber must be caused by natural or other external factors acting in a sudden, unexpected, and unusual manner. A sudden event is one that is swift, not gradual or progressive. An unexpected event is one that is ordinarily unanticipated and one that you do not intend. Hurricanes should fit those IRS definitions.

Unfortunately, most timber casualty losses are limited to the adjusted basis of the timber. The general rule is that the amount of deductible loss is the lesser of the decrease in the fair market value of the timber or the adjusted basis (minus any income received from a salvage operation and/or any insurance proceeds). Part of the casualty loss deduction depends on how the timber is held, the type of property and how it is used, the timber’s age and merchantability, and other nontimber asset income and expenses that will influence this deduction. It is extremely important to work this out with your tax advisor and/or a knowledgeable consulting forester. Be sure to ask your forester if he or she has the necessary expertise to advise you in this area.
To claim a loss deduction, you must make an authentic attempt to sell and salvage the damaged timber and keep records of your attempt to do so. You must also identify the damaged or destroyed object or property. For timber, this identification is expressed in terms of the specific units of volume destroyed such as board feet, cords, cubic feet, etc. However, several recent court cases led the IRS to issue Revenue Ruling 99-56, which allows loss deductions to be calculated on a “block” method (Greene 2004).

When you salvage your timber, be sure to get a written contract to protect the residual trees and your forest land. Identify what type of trees are to be salvaged such as those that are broken, downed or bent at certain angles, and what trees are to be left on the site, if any. Finally, determine how you will be paid for the salvaged timber and include this information in the contract. For more information on marketing timber and timber sale contracts, see the following extension publications: http://edis.ifas.ufl.edu/fr130; http://msucares.com/pubs/publications/p1855.htm.

If your receipts from a salvage sale are greater than your adjusted basis in the timber, you will have a taxable gain, which is a separate transaction from the casualty loss deduction and must be reported as a gain. However, the gain and tax on it can be postponed by using it to purchase qualifying replacement property within an allowable replacement period.

Casualty losses should be reported to the IRS with Federal Form 4684 and as a deduction on your tax return for the year the loss takes place. If the casualty loss resulted from a Presidentially declared disaster (as was the case after many recent hurricanes), you can choose to deduct the loss on an original or amended tax return for the year immediately before the year the disaster took place (Greene 2004). It is also recommended that you make sure you get documentation of the date of the casualty, the location of the damage, property appraisals, and, if possible, photographs of the property before and after the disaster occurred.

Non-business Casualty Losses

You may also deduct damage sustained to personal property, such as downed trees in your yard. To do so you need all the documentation required for business casualty losses. The amount that you may claim is based on the fair market value (FMV) of your property. Once you have calculated the decrease in FMV caused by the loss, you need to subtract $100.00 from the total loss for each event as well as subtract 10% of your adjusted gross income from your combined losses from all events during the year. Also, if you receive insurance or other reimbursements (such as loan forgiveness), these need to be subtracted from the amount of loss that you calculate for deduction.

A certified public accountant, a tax attorney, or a knowledgeable consulting forester with a good tax background are the best options for high quality tax information and assistance.

Timber Tax and Financial Assistance Information Sources

National Timber Tax website. http://www.timbertax.org. This site has information you will need in order to file casualty loss deductions.

http://www.irs.gov/ [30 August 2012]. This website includes information for filing for tax deductions as well as the appropriate forms. The IRS toll-free number for general tax questions is 1-800-829-1040.

http://www.fs.fed.us/spf/coop/programs/loa/tax.shtml. This website provides links to a number of tax-related documents and articles, including Agriculture Handbook 718; it also includes a sample timber sale contract.

http://www.disasterassistance.gov/. This website includes information on all federal assistance programs.

Management Plan Revisions

Once you have dealt with damage assessment, salvage operations, and financial issues, one more important post-storm step will be to revise your management plan to reflect the changes. Regeneration plans, harvest schedules, and activities to minimize future potential problems will undoubtedly need to be reviewed and updated, especially...
for those activities that will be necessary in the next few years and for which technical and financial assistance might become available. The county or consulting forester who helped you prepare your last plan will be your best first contact for this process. If you do not have a current management plan, now may be a good time to develop one as you deal with the changes before you.

Additional Sources of Assistance

If you have trees, bushes, or vines that provide an annual crop (such as grapes or fruit / nut trees), or if you have rangeland or crop land and are interested in receiving federal assistance, contact your local Farm Service Agency office: http://www.fsa.usda.gov/FSA/webapp?area=home&subject=diap&topic=landing, or try one of the following websites:

http://www.florida-agriculture.com/index.htm. This website often has listings of federal programs that deal with crop losses.

http://www.fl-dof.com and http://www.ces.ncsu.edu/nreos/forest/disaster.html. The Florida Division of Forestry and North Carolina State University Forestry Extension websites have information on pruning or removing damaged trees, as well as information for replanting.

References

College of Natural Resources, North Carolina State University website http://www.ces.ncsu.edu/nreos/forest/disaster.html contains fact sheets for a variety of topics related to storm damage and response.

Storm-Damaged Agrichemical Facilities

Thomas W. Dean, O. Norman Nesheim, and Fred Fishel

This fact sheet provides guidelines useful for people or organizations needing to secure pesticides and other agricultural chemicals that have been subjected to severe storm conditions.

Background

Hurricanes and other severe storms can seriously damage agricultural chemical storage facilities and the chemicals they contain. Storm-damaged facilities may adversely affect the environment and people.

Area Security

Following a severe storm, keep unauthorized people away from the chemical storage facility and adjacent areas. Post the area to indicate that potentially hazardous chemicals are present; erect fencing or rope cordons, and inform people entering the property of the presence of an agricultural chemical storage facility. The idea is to keep people and animals out of the surrounding area.

Personal Safety

Make personal safety a priority. When dealing with a storm-damaged facility, wear the personal protective equipment (PPE) needed to protect a person handling the most dangerous material present. This usually means respirator, eye protection, unlined nitrile gloves, rubber boots, long-sleeved shirt, work trousers, and a chemical-resistant apron. Before using ANY personal protective equipment, check to see that it is in serviceable condition. Be alert for SIGNS or SYMPTOMS of pesticide poisoning: nausea, headache, difficult breathing, pinpoint pupils, or convulsions. If these appear and pesticide poisoning is suspected, seek medical attention immediately.

Site Inspection

As soon as possible, inspect the site for storm damage. Focus on 1) the presence of damaged containers; 2) if and where the storm has moved pesticide containers off site; 3) structural damage to the storage facility; and 4) ways to avoid further weather damage.

Spill Management

Finding broken packages or ruptured containers indicates the need for spill management efforts. To manage spills, use a stepwise procedure and focus on:

- CONTROLLING actively spilling materials by standing containers upright, plugging holes, etc.;
- CONTAINING spilled chemicals by installing absorbent barriers;
- COLLECTING spilled product and absorbents and placing these in sturdy containers; and
- STORING all containers of spilled agrichemicals in an area where disturbance is likely to be minimal.
Spill Prevention

Consolidate agrichemicals having intact packaging. Sort these according to package type (glass, paper, plastic, metal), substance type (insecticides, herbicides, etc.) and reactivity group (flammables, corrosives, etc.); then, put them in areas protected from weather, flooding, and building collapse. Consider alternatives such as pallets placed on blocks and covered with tarps or plastic sheeting. The idea is that consolidating intact containers and providing sheltered storage will help prevent container deterioration and subsequent spills.

Product Identity and Labels

Knowing the contents of an agrochemical container is extremely important. Make every effort to preserve and protect container labeling. Containers lacking labeling will likely end up being considered unknowns—and disposal of unknowns is often very costly. Exposure to severe storms, heavy rain, or flood waters, will often cause labels to loosen. Refasten all loose labeling. Use non-water-soluble glue or sturdy transparent packaging tape to refasten loose labels. NEVER refasten labels with rubber bands (they quickly rot and easily break) or non-transparent tapes such as duct or masking tape (they can obscure important product caution statements or label directions for product usage).

As a supplement to marred or badly damaged labels, fasten a baggage tag to the container handle. On the tag write the product name, formulation, concentration of active ingredient(s), and date of product purchase. If there is any question about the contents of a container, set it aside for disposal.

Salvage

If the labeling is legible and secure, agrichemicals in intact waterproof containers, and formulated as liquids, emulsifiable concentrates, flowables, or oil solutions are often salvageable. Check each container for hidden damage. In particular, determine whether or not the pour spout seal has been broken. Upon finding a broken seal, examine the contents for evidence of contamination--especially water-induced damage. In general, liquid formulations that have a milky appearance have been corrupted by water encroachment. In most cases, these should be set aside for disposal.

Oil solutions, such as livestock sprays, can often be salvaged. Water is easily detected in oil solutions. Since oil floats on water, carefully pour off the oil and leave the water behind. Handle the water as a container rinsate (e.g., use it as make-up water); thereafter, return the oil solution to its original container. Triple rinse the temporary container and handle the rinsate as dilute pesticide (e.g., include in a batch of spray mix.)

The salvageability of dry formulations (baits, dusts, wettable powders, granules, dry flowables, etc.) is more difficult to assess. In general, products held in paper packaging are more vulnerable to severe-storm-induced damage. But, paper is not the sole problem. Plastic and foil-lined bags are also difficult to assess for pinholes and unsound seams. As a rule, avoid opening large quantities of dry formulation packaging and examining contents in detail. Again, when in doubt, set the container aside for later disposal.

Figure 1. Dry product containers damaged following storm event. Credits: UF/IFAS Pesticide Information Office
Temporary Storage
Temporary storage is another key concern for agrochemical facilities damaged by severe storms. In addition to the aspects of storage discussed earlier (see Spill Prevention), four other points merit mention:

- Designate three separate storage areas, one for salvaged materials, a second for materials intended for disposal, and a third one for materials in the process of being re-collected and evaluated.
- Make sure each storage area is secure and not readily accessible to persons or animals.
- Provide each area with protection from further weather and debris-induced damage.
- Keep each of the three stockpiles away from supplies of water, foods, fuels, machinery, and personal protective equipment.

Handling and Transport
All post-storm movement of agrichemicals and their containers (including re-collection of off-site containers) requires care and greater-than-normal safeguards. Labeling must be preserved (even for those that will ultimately require disposal). Storm-damaged packaging is more spill-prone. Also, for certain agrichemicals, moisture increases the reactivity and fire hazard. Handling and transport efforts must take these considerations into account BEFORE movement of the product is attempted. Consult SDS sheets. Finally, before moving agrichemicals whose packaging is suspected to be weakened and likely to spill, have temporary containment vessels (such as garbage cans lined with plastic bags) on hand.

Disposal
Disposal of natural-disaster-induced agrochemical waste should proceed only after proper authorities have been contacted. In certain cases, part of the disposal costs might be paid by disaster-relief funds. Persons having severe-storm-damaged agrichemicals should contact the Florida Department of Environmental Protection (850-245-8705) for information on their disposal.
For more information, contact your local county UF/IFAS Extension office

SolutionsForYourLife.ufl.edu